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TECHNICAL NOTE 3970

THIN ATRFOIL. THEORY BASED ON APFROXTMATE SOLUTION
OF THE TRANSONIC FLOW EQUATION

By John R. Spreiter and Alberta ¥. Alksne
SUMMARY

The present paper describes a method for the approximate solution of
the nonlinear equations of transonic smell disturbance theory. Although
the solutions are nonlinear, the analysis is sufficiently simple that
results are obtained in closed analytic form for a large and significant
class of nonlifting airfoils. Application to two-dimensional flows with
free-stream Mach number near 1 leads, for instance, to genersl expressions
for the determination of the pressure distribution on an alrfoil of spec-
ified geometry and for the shape of an airfoll having a prescribed pressure
distribution and gives, furthermore, the correct variation of pressure
with Mach number at Mach number 1. For flows that are subsonic everywhere,
the method ylelds a pressure-correction formulsa that is more accurate than
the Prandtl-Glauvert rule and compares favorably with existing higher
approximations. For flows that are supersonic everywhere, the method
yilelds the equivalent, in transonic gpproximation, of simple wave theory.
Results obtained by application of these general expressions are shown to
correspond closely to existing solutions and to experimental date for a
wide variety of airfoils,

INTRODUCTION

The difficulty of solving the nonlinear equations of motion of a
compressible inviscid gas has led to widespresd use of approximste methods
in the practical solution of the problems of airfoll theory. The simplest
and most versatile approximete method is that based on a complete lineari-
zation of the equations and stems from the pioneering work of Munk, Prandtl,
Glauert, Ackeret, and others (see refs. 1 and 2 for a resume') . Although
this linear theory of compressible flow has been extensively developed in
recent years and is widely used in aeronautical gpplications, it has two
limitations that are of significance in the present discussion. First,
linearized theory gives only a first approximstion that is correct for
airfoils of small thickness ratio. This limitation is, in socme respect,
of continually diminishing significance as the aeronauticel engineer is
forced to use thin wings and slender bodles t0 avoid heavy penalties in
wave drag. If the airfoil is not sufficiently thin, however, correctlons
are necessayy end higher order theories have béen developed to f£111 the
need (see ref. 3 for a resumé). Second, and more important for the
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present dlscussion, linearized theory requires, in general, that the Mach
number be sufficiently removed from unity that the flow is either purely
subsonic or purely supersonic. If both subsonic and supersonic veloclties
occur in different parts of a single flow field, the flow is sald to be
transonic and the results of nelther linear theory nor the existing
higher order theories are, even qualitatively, in agreement wlth the
experimentally observed flows.

Pransonic flows have been studied successfully by consideration of a
simplified, although still nonlinear, theory that was originally conceived
in an effort to provide a useful first approximation for the pressures and
forces on thin wings and slender bodies in inviscid flows with free-stream
Mach number very near unity (see ref. 4 for a short resumé). More recent
developments described in references 5, 6, T, 8, and elsewhere have shown
that the useful range of this theory can be extended to include subsonic
and supersonic flows if slightly different approximations are employed in
the derivation of the fundemental equations. Although the resulting theory
is commonly deslignated as transonic small disturbance theory, or more
briefly as trensonic flow theory, it is actually a unifled theory for sub-
sonic, supersonic, or transonic flow around thin wings and slender bodiles,
end is moreover, the simplest theory proposed to date that 1s cepable of
yielding reliasble results throughout that Mach number range.

This formulation of transonic flow theory provides a set of equations
that differs from that of linear theory by the addition of one nonlinear
term in the differential equation for the perturbetion potential and in
the shock relation. If the flow 1s purely subsonic or purely supersonie,
solutions of the equations of transonic flow theory cen be sought by gppli-
catlon of exlsting methods for spproximsting the solutlons of the exact
equations of compressible inviscid flow. If the flow is tramsonic, how-
ever, the resulis obtained by epplication of these methods are at wide
variance with those observed experimentally and 1t is necessary to devise
new and appropriate metheds of solution. Although methods of the succes-
slve spproximation type have recently been developed that can be spplied
to tramsonic flows (e.g., refs. 9 and 10), the principal method that has
been employed in the theoretical analysis of such flows involves the use
of the hodograph transformation by means of which the nonlinear equation
for the perturbation potential is transformed into a linear differential
equation of mixed elliptic~hyperbolic type, the Tricomi equation. Although
the resulting boundary-value problem is still very difficult to solve,
this method has been applied with considersble success in the study of
transonic flow eround wedge and flat-plate alrfolls and e number of spec-
ific results have been given in recent years by Guderley and Ybshihara,
Vincenti and Wagoner, Cole, and others (see ref. 1l for a resumé). Exten-
sion of this method to permit calculatlon of transonic flows around arbi-
trary alrfolls with curved boundaries appears, however, to be a 4ifficult
task.

The present analysils is based on a novel method of spproximation that
evolde most of the difficulties of existing procedures while still preserv-
ing much of the nonlinear effects in the solution. Sufficient simplicity
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is gained by restricting attention to surface pressures and to flows that
are either purely subsonic, purely supersonic, or have a free-stream Mach
number near 1, that results cen be obtained in closed analytical form for
both the direct problem of calculsting the pressure distribution on an air-
foll of given shape, and the inverse problem of calculating the shape of
en airfoll assoclated with a glven pressure distribution. Inasmuch as the
magnitude of the errors introduced by use of the spproximation procedures
is not evaluated in all cases by mathematical considerations, the useful-
ness and accuracy of the results are demonstrated by the calculation of
the pressure distribution and drag for many different alrfoil shapes and
by comparison wlth existing theoretical and experimental results.

Of the theoretical results svallable for comparison, only two are
exact. They are the simple-wave solutlon for supersonic flows withoub
shock waves, and the veristion of pressure with Mach number at Mach num-
ber 1. The present method yields both of these resulits exactly within the
framework of transonic small disturbance theory.

Although the existing results mentioned above for wedge airfoils at
Mach number 1 contaln certain approximations beyond those implicit in the
use of the equations of transonic flow theory, the influence of these
approximations appears to be minor and the results are generally consid-
ered to be very nearly exact solutions of these equations. The present
method produces results for this case that are In substantial agreement
with these previous theoretical results. In contrast toc the hodograph
methods, the necessary steps are sufficiently simple, moreover, that
results can also be obtained for sonic and near sonic flow around arbitrary
airfoils with curved bounderies. Since previous theoretical information
for such cases is meager, comparisons are made with a large number of
experimental results. In general, the theoretical results found by appll-
cation of the present method lle within the renge of experimental scatter
of the data.

In the subsonlc range, no exact solutions are available for f£low
around & thin airfoil. Comparisons are mede, therefore, with pressure
correction formulas, such as that of Kdrmén-Tsien, and with higher
approximations obtained by iteration methods.

A simple heuristic account of the general method and extensive dis-
cussion of the results are contained in the main text. Additional details
concerning the underlying basis for the general. procedures are contained
in the Appendix.

PRINCIPAL SYMBOLS

a speed of sound

8y speed of sound in the free stream
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- P
pressure coefficlent, P )
A
2 [>]
2 1/3
1
M =(y+1)] ,
72/3
chord
section pressure drag coefficient, a
Py s
2;‘Um c

(M 2(y+1)1%/°

T

5/3

€

pressure drag

2
M (7+1)
U,

oo

local Mach number

free-stream Mach number

exponent in the relations for airfoll ordinates given by equa-
tions (56) and (61)

static pressure

free-stream static pressure

resultent local velocity

meximm thickness of profile

free-stream veloclty

perturbation velocity components parallel to x and z axes,
respectively

value of
value of
value of

value of
Joined

u

u

obtained by solution of equation (21)
obtained by solution of equation (8)
obtained by solution of equation (39)

at which parabolic and hyperbolic solutions are
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X,z Cartesian coordinates where x extends in the directiomn of the
free-stream velocity

x¥* value of x at which the local velocity is sonie

4 ordinates of the upper surface of the sirfoil
T gamme, function
4 ratio of specific heats, for air ¥ = 1.k
e semiapex angle of wedge alrfoil
ac
A pressure gradient, - —2
d(x/ e)
ooOL-MS-m
2
H=-1+ku
2
ox
2

£ M=-1
o« 2 2/3

M, (7+1) 7]
p free-stream density of air
a0
T thickness retio, t/c
P perturbation veloclty potential

Subscripts

cr values assoclated with critical Mach number-
i values associated with incompressible flow or with M =0
L values given by linearized compressible flow theory

M =1 values assoclated with M =1
Zmax  values assoclated with maximum ordinate of airfoil

£ =0 values associated with §w=0 , Or with Moo=l
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FUNDAMENTAT, EQUATIONS AND BOUNDARY CONDITIONS

Consider the steady flow of an inviscid compressible gas past an
arbitrary thin symmetrical nonlifting eirfoil, and introduce Cartesian
coordinates x and z with the x axis parallel to the direction of the

free-stream, as illustrated in sketch (a).

z Let the free-stream velocity and density
2 be Uy, and p,, the perturbation potential
Us be ¢, and the perturbation velocity compo-
— [T~ * nents parallel to the x and z axes be Py
° ¢ or u, and ¢,, or w, where the subscript

indicates differentiation. The boundary con-
ditions require that the perturbation veloc-
ities vanish at infinity, and that the flow

be tangential to the wing surface. The first
condition indicates that ¢ 1s constant at infinity. The latter condition
can be approximated for thin wings by

Sketeh (a)

(9,), o = Vo = (1)

where Z represents the ordinates of the airfoil upper surface. The
pressure coefficient Cp d1s likewise approximated to first order by

= _—..P_Pw = =2 & = -2 % (2)
= 5 T, U
—— Uw

These relations are familier from linear theory, but apply equally for
transonic thin alrfoil theory. The differential equation for ¢ i1s not
the seme as in linear theory, however, but is

1-M2.-M2 o+l ?%) Pyt B,y = O (3)

where M, 1is the Mach number of the undisturbed flow and ¥ 1is the ratio
of specific heats (1.4 for air). It is useful to note that the coeffi-
cient of @y, corresponds, in the present approximation, to 1-M2

where M 1is the local Mach number.

Knowledge of methods for obtailning solutions of equation (3) is
meager, not only because the equation is nonlinear, but because 1t can
chenge type (elliptic, hyperbolic), depending on the value of M, and Py
This change of type 1s an essentiel feature of transonic flow, since
subsonic flows are represented by elliptic equatlions and supersonic flows
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by hyperbolic equations. If both types of flow occur in & single flow

field, it is gpparent that the differentlal equation must change type.

In the present case, the type of the equation is recognized by the sign
of the total coefficient of @, as follows:

w2 7 AL >0 elliptic (subsonic).

1-M2 P (%)

Us < 0 hyperbolic (supersonic)

An important quentity in the discussion of compressible flows 1s the
critical pressure coefficient CPcr agsoclated with the locel occurrence

of sonlc velocity. The appropriate relation is found by combination of
equation (2) and the relation obtained by equating the coefficient of Py
in equation (3) to zero, and is

2(1 - M %)

cI’r.:r - M 2(y + 1) (5)

In transonic and supersonic flows, it is also necessary, in general,
to provide an additional equation for the discontinuocus changes in veloc-
ity that occur at shock surfaces. The necessary equations, when simpli-
fied to the form consistent with the spproximaetions of transonic flow
theory, reduce to

(122 22 (s ) J(uermn)® + (o) ©

P = B
where the subscripts & and b refer to the values on the two sides of
the shock surface. With the exception of the Appendix and minor refer-
ences in the main text, equation (6) is not employed explicitly in the
following analysis and discussion because sttention is confined to
(a) purely subsonic flows in which no shocks occur, (b) purely supersonic
flows in which shock waves can be approximeted with good accuracy by lsen-
troplc compressions, and (c¢) flows with free-stream Mach number near 1 in
which the shock waves are situsted elther downstream or Ffar upstream of
the airfoll.

The remainder of the present paper is concerned with the approximate
solution of the preceding equations and with comparison of the results
obtained in specific appllcations with existing theoretical and experl-
mental resulits. Purely supersonic flows are discussed first becsuse the
method of approximation ylelds the exact equivalent, in transonic approx-
imation, of simple wave theory. Purely subsonic flows are discussed next
because of the close relationship between the resulis for thls and the
preceding case. Flows with free-stream Mach number near 1 are treated
last.
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SUPERSONIC FLOWS

Approximste Solution of Equations

It is convenient in the analysis of supersonic Fflows to introduce
the symbol KH as an abbreviation for the negative of the coefficient

of Py

7+1

2 2 2
Ag o= M 214+ M —Umqnszm-l+ku>O (7
and rewrite equation (3) in the form:
“NgPxx * Py = O (8)

It is now assumed that Ay 1s neither zeroc nor infinite and that it varies
sufficiently slowly that its derivatives can be disregarded so that it can
be considered, temporarily, as a constant. At this stage, the problem is
equivalent to that encountered in linearized supersonic alrfoll theory

(it 1s identical if Ag 1s replaced by M&z-l) and the solution up at
the airfoll surface 1s

Up 4z
ug = - ’-EL'E; (9)
NE
Differentiation ylelds
g U 8% (10)
ax h\H ax2

If, now, Mmg-l + ku 1s restored in place of Ay so that, in effect,
the local value for Ag i1s used at each point and the subscript H
on u is dropped, equation (10) becomes

2

du _ _ oo a~z

It is immediately apparent that a certain degree of arbitrasriness is dis-
played in the preceding steps and that different results will be obtalned
depending, for instance, or whether M/ 2-1 + ku i1s substituted for Ag
in equation (10) as above, or in equation (9), or in other equations
obtained by further differentiation or integration of equation (9). It
is shown iIn the Appendix, however, that the error involved in the preced-
ing steps can be assessed exactly by exsmination of the remainder terms
that have been omitted in writing equations (9) and (10). The advisabil-
ity of using equation (11) is assured by the fact that the error is.shown

to vanish, in the absence of shock waves, if Ay is replaced by M 2-l+ku
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in equation (10), but not in equation (9). This conclusion becomes imme-
diately evident, furthermore, upon recognition of the fact that equa-

tion (11) is the counterpart, in transonic small disturbance theory, of

a fundamental differential equetion that occurs in the analysis of Prandtl-
Meyer and simple wave flows (see, e.g., ref. 12, p. 87 or ref. 13, pp. 190
and 212). Equation (11) is a nonlinear ordinary differential equation

for u +that can be solved easlily be separatlon of variables. The result
is

aj2
.32_k (M, 2-1+ku) /2 U, % + C (12)

where C 1is a constant of integration. In applications of eguation (12)
to flows that are supersonic everywhere, perhaps the most logical method
for the evaluation of thls constant is to use the expression hetween u
and dZ/dx provided et the leading edge by the transonic approximation
to the shock relation, that is by equation (6) with u, and wg equated
to zero, up to (W)y_o, and Wy to Uy(dZ/dx),_,- The result given by
equation (12) with C evalusted in this way corresponds , to the degree
of spproximation afforded by use of transonic small disturbance theory,
to shock-~expansion theory. An alternative procedure that leads to a
somewhat simpler result possessing very nearly equal accuracy is to eval-
uste C by use of the result indicated by equation (9) that u =0
where dZ/dx = 0 for any nonsingular Ag; thus

2 8/2
¢ .= (M 2-1) (13)
whence
2/8
w2 loe + [0 ¥2 - a2 (1)

The corresponding relation for the pressure coefficient CP is obtained
by combination of equations (2) and (14), and is

=2 { (M 2-1)- [(Mmz-l)s/ 2 -3 2() -d—ZT/S (15)
Cp = Mmz(7+l) 2 Mo (7 dx

It should be noted thst the restriction to supersonic flow imposed in the
evaluation of C and in the inequality of equation (7) requires that
equation (15) is to be applied only to cases for which the quentity in
the square brackets, that is, [(M=-1)3/2 - (3/2)M 2(y+1)(dz/dx)]1, is
positive.
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Comparison With Existing Higher Approximations

Equation (15) is recognized, by comparison with equation (3-15) of
reference 3, page 387,:L as the precise equivalent, in the transonic small
-6 - disturbance spproximation,
) of simple wave theory for
4 the surface pressure on an

/ airfoll in supersonic flow.
A

3

s

7
L~ the present range of inter-
= est. Within this Mach num-

/] Exact simple wave theory 1s
~4 2 va known, moreover, to be per-
@ > / fectly adequate for all
» practical purposes up to a
//
/
W I ber range, the results
Mg=20 obtalned by use of simple
6 08 08 -6 wave theory are almost lden-
. : . ’ tical with those cobtained by
use of shock-expansion

Mach number of 3, which is
4z
A dx
/ /. / theory. Comparisons of the
-/ L varigtions of Cp with dz/dx
/fr i

conslderably in excess of
7
|
/X / Eq.(I5) indicated by exact simple
——— Exact simple — wave theory and by equa-
/' wave theory tion (15) are shown in
/ / sketch (b) for several Mach
# 4 numbers from 1 to 2. As
/ might be enticipeted, the
[ two sets of results are in
* close agreement for Mach
Sketch (b) numbers near 1, and dlffer
by an increasing amount
with increaslng Mach number.

Although the necessary calculations are very easy to accomplish in
any given case, simple wave theory 1s not always used in actual practice.
Meny calculetions sre based on linear theory or Busemann's second-order

lComperison discloses that the quantity 2(y+1) that appears in equa-
tion (15) is represented by ¥+l in equation (3-15) of reference 3. The
difference is associated with a corresponding difference in the coeffi-
clent k of the nonlinear term of equation (3). Although the two coeffi-
clents are 1dentical at M, =1, and might sppear to be equally comslstent
with the other assumptions of transonic flow theory, it has been showm in
references 5, 6, 7, 8, and elsewhere that the approximastion obtalned by use

of M 3(y+1) is much the better of the two for Mach numbers other than 1.

<l
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Sketch (c)

theory. Consequently, an additional set of graphs is shown in sketch (ec)
in which the curves of sketch (b) are repeated together with the corre-
sponding curves calculated by use of first- and second-order theory. No
comparisons are shown for M,=l because the latter theories indicate
infinite pressures. It can be seen that equation (15) furnishes & better
approximation than linear theory throughout the entire range of variables
shown on sketch (c) and a better approximation than second-order theory
for Mach numbers less than about l.4. It can be seen that second-order
theory furnishes a very poor approximation for CP at Mach numbers
approaching unity.

In order to explore this behavior further, two additional curves
labeled "third order"” and "fourth order," calculated using the formulas
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of references 14 and 15,2 are included on the graph of sketch (c), even
though they must be interpreted in a somewhat more restricted sense than
the other curves. To be more precise, the third-order curve is restricted
to airfoils for which dZ/dx is zero at the leading edge, and the fourth-
order curve to airfoils for which both dZ/dx and 42Z/dx® are zero there.
It is clear from this sketch that the accuracy of second-order theory at
Mach numbers near unity is not improved by addition of higher order terms.
The explanation resides in the fact that the larger values of IdZ/dxl
shown on the graphs of sketch (c) exceed the radius of convergence of the
power serles expension for for all but the highest Mach number shown.
With the noted restrictions on the leading edge, the higher order results
of sketch (c) are equivalent to the first few terms of a power series
expansion, in terms of dZ/dx, of the expression for Cp indicated by
exact gimple wave theory. The radius of convergence of the serles depends,
of course, on the Mach number and is given by the value of IdZ/dx] asso-
clated with the occurrence of somic flow or, In terms of the curves shown
on sketches (b) and (c), with the termination of the left end of the exact
curve. The fallure of higher order theories at negative dZ/dx 1s thus
of purely mathemstical origin and has no direct physical significance.

Additionsl Properties of Approximate Sclution

Equation (15) hes some additional interesting properties worth noting.
Of the two msjor components of the right-hend side, the first is recognized
upon comparison with equation (5) as the expression for C:p . Since the

remaining term is zero when Cp = chr’ it follows that thechpression for

the critical value for dZ/dx associated with the occurrence of sonic
velocity at a given Mach number M, is

2 8/2
(g - ) (16)

ax/.. 34 2(y+1)

It follows, furthermore, that a curve representing the varlation of
with M, for a gilven dZ/dx, and hence a given polnt on the airfoil,
approaches infinite slope as CP approaches cPcr'

An alternative form for equation (15) that is useful for some pur-
poses is the following which expresses CP in terms of the linear-theory
solution CPL rather than dZ/ax.

2(M?-1) | . 3 Me2(r41) a/e
° M, 2(7+1) : [l b M2 CPL]

2pttention of those who refer to reference 15 is called to the fact
that the first term sppearing in the fourth-order coefflclent a4 of
equation (29) should be 2/3 rather than 1/3. This term is written
correctly in the numerical example given in equation (135).

(17)
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where
2 4z

LT T &

This relation can be written in somewhat more concise form if expressed
in terms of the transonlc similsrity parameters CP and E_, thus
2/3

Epzzgml- 1-%%1';- (18)

(>}

where

1l/s8

oMl
[M2(y+1)T1%/®

_ M E(+1)]
CP =

TZ/S 2 00

end T 7refers to the thickness ratioc. Critical values for '(-‘;P and ©

corresponding to the local occurrence of sonic veloclity are easily recog-
nized to be the following:

T, =2t Cor =.13£ £ (19)

Por

SUBSONIC FLOWS

Approximate Solution of Equations

The procedure described in the preceding sectlon will now be applied
to the analysis of subsonic flows. Thus, introduce the symbol Ap as an
abbreviation for the coefficient of @ -

+1
A = 1-M2-M2 7?00 9, = 1-M-ku>0 (20)

and rewrite equation (3) as follows:

AgPyx + Py = 0 (21)

If it is again assumed that Ay 1s nelther zero nor infinite and that it
varies sufficiently slowly that its derivatives can be disregarded, the
problem is equivalent to that encountered in linearized subsonic airfoll
theory and the solution up at the airfoil surface is

Uo pC az/dg a ui
aNAgUy  *E JX];J-

Ug = (22)
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wvhere the subscript i refers to the values for M =0. Differentiation
yields

P (23)
dx Ap AX ’

If, in the same manner as described for the supersonic case, l-M2-ku

is restored in place of Ag so that, in effect, the local value for Ap
is used at each point, and the subscript E on u is dropped, equation (23)
becomes

du 1 duy
ax = ax ( )
1-M,"-ku

As in the previous discussion of supersonic flows, the error texrms are
omitted in writing the preceding relations, but are included in a moxre
complete presentation of the equations given in the Appendix. Once again,
the resulting relstion is & nonllnear ordinsry differential equation that
can be solved readily by separation of variables

8
- é% (1-My3-ku) " . u + C (25)

In applications to flows that are subsonlc everywhere, the constant of
integration C 1is evaluated by use of the result indicated by equa-
tion (22) that u=0 where wui=0 for any nonsingular Ag, thus

2 2,3/2
C = = — (1~ 26
= (1-%2) (26)
In this way, the following relation is obtalned between u and uy
1 a/2 2/3
u == 1-Mo2- [(1-M°o2) - % kui:l (27)

The corresponding relation for the pressure coefficlent CP is obtained
by combination of equations (2) and (27) end is

2/a
% = - gy | () (06D SR, | =

where
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In the same way as noted for supersonic flows following equation (15),
the restriction to subsonic flow imposed In the evaluation of C and by
the inequality of equation (20) requires that equation (28) be applied
only to cases where the quantity in the square bracket 1s positive.

This result possesses several simple, but interesting, properties.
First of all, the leading term of an expansion of equation (28) in a
series involving ascending powers of CP is precisely the familiar

Prandtl-Glauert rule of linearized subsonic compressible flow theory

(29)
%y, = ,—l_Mm

The coefficients of succeeding terms, however, do not agree with those
given by the method of successive approximstion. Next, the first of the
two major components of the right-hend member of equation (28) is recog-
nized, just as in the supersonic case, as the expression for the critical
pressure coefficient CPcr' Since the remaining term is zero when

=CPcr’ 1t follows that the expression for the critical value for Cpy

asgsociated with the occurrence of sonic velocity at a given Mach num-
ber M, 1is

" (l-M&F)B/Z
CPicr = 5. M 2(7+1) (30)

It may be noted that this value is just two-thirds of that obtained by

use of equation (5) together with the Prandtl-Glesuert rule. It follows,
furthermore, that a curve illustrating the variation of C; with M, for
a given CP , and hence a given point on the airfoil surface, approaches

infinite slope as CP approaches cPcr' This latter behavior signifies

that a power series expansion of the result will only converge for Mach
numbers less than the critical. Last, the following result is obtained
if equation (28) is expressed in terms of the subsonic linear theoxy solu-
tion QPL rather than CPi

_-2(1-MB) | [, 3 M(y41) /e
® " 2D | [ L2 CPL] 5

where

_P

Cpy, =
1-M2
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Note that the relation between CP and CP% indicated by equation (31) for
gliv

subsonlc flows is precisely the same as en by equation (17) for super-
sonic flows. It follows lmmediately

- that the corresponding expression in
-4 — terms of the transonic simllerity
E&ﬂ/ G \\\\ Gv¥d  paremeters Cp and £, glven by equa-
:é_,// -2 \\\\_g tion (18) applies to subsonic, as well
as supersonic flows. In order to
B 3 2 1 0N le?2 3 %2  illustrate the nature of the results
4 ——2 <F—4—4 indicated by equation (18), a plot of
1~ the variation of Tp with §, for

Cﬁfﬁ) various GPL~/|§°°| 1s shown in

sketch (d). Although the remarksble
Sketch (d) symmetry sbout E£,=0 is a consequence
of expressing the results in terms of
the tramsonic similarity parameters,
/\ B the general symmetry remains, although
-6h in somevhat distorted form, when CP

kO 1s plotted as a function of M, for
L \_2 S~ |%M constent C .Jll -My|. Such a plot

6

-4
—-2 is ghown in sketch (e).

[

0 2 4 6 B8 2 14 16 18 20
2 2 Mol 412
T~ \<’ Pt Comparison With Existing
4 4
\\\ ~<;w',gmﬁ,), Higher Approximsations
<6 B
I The remginder of the present sec-

tlon on subsonic flows is concerned

Sketch (e) with an evaluation of the degree of
accuracy achieved by use of equation (28). This discussion is handicapped
somewhat by the fact that all other theories for subsonic flows around air-
folls are slso approximate and that no exact solutions are known. Perhaps
the most widely used higher approximation is the Kérmén-Tsien rule. (See
refs. 3 and 16 for a resume. } Although the traditional derivation of the
Kérmén-Tsien rule is based on the hodograph method, i1t is not without
interest to observe that the Karmén-Tsien rule can be obtained by use of
the present procedures together with the three assumptions introduced in
the original derivation. These are: (a) that 7 can be approximated
by ~1 1n the expression for the speed of sound, (p) that the perturbation
velocities are small, and (c) that the Mach number can be considered smell
in the evaluation of edditional effects of compressibility beyond those
indicated by linear theory. The starting point is equation (3) wigth the
coefficient of Pox replaced by the approximate relation for I1-
where M is the local Mach number, afforded by use of assumptions (a)
and (b). The necessary relation can be derived from the energy equation

a2 Q2 8y 2

ol 71“"2" (32)

L
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where
@ = (Uu)® + w2
by setting y = -1, whence
a2 = 8,2 - U2 + g2
and
1M =1 - L. 1-Mo® % 14"
8% L-MPME(P/Us®)  1+2M2(w/U)

Note that this approximation does not permit the attslmment of M=1 with
finite q/U, and with M, different from unity. Substitution of this
relation for 1-M® in place of #p in equation (23) and integration
yields

(33)

2
Jl+2Mm2(u/Uw) = —E—M.::_M;é U—ui + C (34)

The constant of integration is agaln evalusted by setting u=0 where uy=0,
whence C equals unity. Solution for u and introduction of the rela-
tion between u and Cp, glven by equation (2) yields

S N (U R et
N Yy b N1-M 2 y N1-M2 + (1/4)M7Cp,

Replacement of Mm2 in the second term in the denominator by

2 (l— .[l-Mma ) is consistent with assumption (e¢) and leads directly to

(35)

the familiar expression for the Karmén-Tsien rule
NERTE (1- Jin2 ) (cpi/z )

This rule, in common with the Prandtl-Glauexrt rule and the present result
given in equation (28) s 1s termed a pressure correction formulse because CP
is given in terms of CP and M,, with no further dependence on alrfoil

i

shape. A comparisen of the variations of CIJ with M,, Indicated by these

Cp (36)
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Exuc?‘ Iseniropic \\ ] other pressure-correction

\ / formulas having widely vary-
Eq.(28) A ing properties have also been
_____ Prandti-Glauert - N proposed in recent yeers.
G | . ‘rmdn-tsien A A One thet ylelds results in
—-—— Garrick-Kaplan =25 \ closer agreement with equa-
-4 - LA tion (28) than the Prandtl-
Glauert or the Karmsn-Tsien
rule has been glven by Garrick
and Kaplan in reference 17.
fo) A curve 1llustrating their
0 .2 4 M. © 8 I0 pesults is included on
sketch (£).

-2 C X - - three relations 1s shown in
p“\\\\/'cpc,Eq-@ sketeh (f). A great meny

\
\

4 A second important
’ method that has been used
R to obtain higher approxima-
NN "~ tions for subsonic pressure
NN\ ! distributions on thin air-
foils is the method of suc-
cessive gpproximation in
Sketeh (f) which the solution is
expressed in & power series in thickness ratio. In this method, the first
term is the result given by linear theory, and the coefficlents of succes-
sive terms sre determined by iteration. Higher approximations cannot be
expressed in terms of Cpi and M, 1in such a simple and universal menner

/,
I
/

y
/

/

as with the pressure-correction formulas, but depend on the airfoll shape
in a more explicit manner. Although & relatively simple and general pro-
cedure for the evaluation of the second approximatlon has recently been
given by Van Dyke (ref. 18), the determinstion of the third approximstion
has been accomplished for only a few special shapes. One of these 1s the
nonlifting symmetrical clrcular-arc section for which the second epproxi-
mation has been given by Hantzsche and Wendt (ref 19) and the third
approximstion by Aseka (refs. 20, 2l, and 22) Sketch (g) shows a com-
parison of the variations of with M, at the midpoint of such an air-
foil having a thickness ratio T of 0.10, as indicated by equation (28)
and by the first, second, and third approximations It can be seen that
the results obtained by use of equation (28) are identical to those gilven
by the first approximation (or linear theory) for smell Mach numbers, but
depart therefrom with inereasing Mach number and are much closer to the
higher approximestions for Mach numbers near the critical. It should be
noted that the curves labeled first, second, and third order represent
the results indicated by successive approximaetions to the solution of the

SThe results for the third approximetion given in the present report
differ from those obtainable directly from the expressions given in either
reference 20 or 21 and 22 due to the correction of some misprints. These
corrections have been verified by coxrespondence with the author.
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exact equation for inviscid compress- YT T
ible flow. It 1is also of interest to _g ¢Cp, Eq. (5)
compare the results indicated by Cp,, Exact Isentropic T“
equation (28) with those indicated by +— = Es)_
successive approximations to the 4} . - & i
solution of the simplified equations o Circular arc =10 /Z/

of trensonic small disturbance theory. —

The latter resulis can be calculated -2

Dby use of the following expression, ~—— fst order

which is readily derived from Asakals 2nd "

result by teking the limiting form , 3rd
consistent with the approximations of 0 2 4 Mg © 8 0

transonic flow theory: Sketeh ( )
e g

(L1

-.&__1__(}9
* fimE (14,22

1) 2M,*
[-l--aSi+ZZn2> 13292 4908) w—r‘a+..

=\" 108 " 6 (1272
1) 2 2, 4
= - 2.5465 —mm - 0.5132 S.Zi.)_Mm._ 2 - 0.6339 _(_71'1'_)_7145’.5 3
1-M2 (1-3,%)° (437 (3

It can be seen that the curve in T T 1 G
sketch (h) indicated by equation (28) _ e \Gp,, E0
is somewhat higher than even that | Gircular-are =10 Aﬁ
representing the third approximation, G 7 E

but evaluation of its accuracy 2 Eq. (28) 7,// X
remains difficult because neither the Wz \
exact solution nor an upper bound for

the results 1s provided by the clas- -2

sical method of successive approxima- --—— st order

tion. Attention is called to the —— 2nd : ;Eq.(37)

fact that recent developments in ——3d "1
transonic flow theory permit the o 2 4 6 8 10
establishment of an upper bound by Moo

application of an alternative method Sketch (h)

of successive approximation that
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involves the solutlon of quadratic, rather than linear, equations &t each
step of the iteration process. This process, based on the methods employed
in reference 9, 1s described in the Appendix, and additional results are
given for the speclfic case considered in sketch (h).

FLOWS WITH FREE-STREAM MACH NUMBER NEAR 1

The analyses of supersonlic and subsonic flows given in the preceding
sections have started by introduction of a symbol A for the coefficlent
of @, and the assumption that A 1s nonsinguler and varies suffi-
clently slowly that it can be regarded as a constant in the initial stages
of the analysis. ©Since the results so obtained terminate 1f A=0, or
physically if sonic velocity occurs in the flow field, it is Ilmmedletely
clear that some chenge 1s necessary to study flows with free-stream Mach
number near 1 vhere the transition from subsonic to supersonic flow is an
essential feature. The technique adopted is to introduce the symbol Ap
as an abbreviation for the coefficient of @y rather than Pyy, thus

y+1 du
= .Mm2 —_— P = k — (38)
7\P Uco xx ax
whence equation (3) may be written as follows:

Ppy = NPy = ~(1-M5)o,, = Tp (39)

If attention 1s conflned to flows with free-stream Mach number 1 so
that the right-hand side of equation (39) vanishes and 1f Xp 1s replaced
by a constant, the resulting relation glven by equation (39) is a linear
partial differential equation of parabolic type that is familiar from the
study of one-dimensional unstesdy corduction of heat. If approximate
solutions for flows with free-stream Mach number 1 sre sought in this way,
the analysis proceeds through considerations that are generally applied
to parabolic differential equations, and i1s, in some sense, intermediate
between the mixed elliptic-hyperbolic type of the transonic equation.

The idea of using the equation for heat conduction for the study of tran-
sonic flows in this way is not new, but aepparently originated with
Oswatitsch, who suggested it to Behrbohm for the analysis of internmal
flows of nozzles (refe. 23 and 24). The same 1dea has been applied more
recently by Oswatitsch and Keune (refs. 25, 26, and 27) to calculate the
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flow around the forepart of slender bodiles of revolutlion at free-stresm
Mach number 1, and they have shown that the results are in remarkable
agreement with those measured on the front half of a circular-arc body

of revolution. Although the pasrameter Xp 1s regarded throughout as a
constant, and various means are proposed for the selection of an appropri-
ate velue, 1t develops that the numerical result for the pressures on the
Porward part of typical smooth bodies of revolution depends so slightly
on the actual choice that almost any reasonable value can be used for Ap.

If flows with free-stream Mach number different from unity are con-
sidered so that the right-hand side of equation (39) remains, and if Np
is again replaced by a constant, the resulting differential equation is
linear and 1s of elliptic or hyperbollc type depending on whether the
free-stream Mach number, rather then the local Mach number, is less than
or grester than unity. Maeder and Thommen (ref. 28) have suggested that
this linearized equation, or its counterpart in three dimensions, be
applied, together with a new and arbitrary rule for the selection of a
value for Ap, to calculate the pressure distribution on complete bodies
of revolution and on airfoils in two-dimensional flows. The selection
of an appropriate value for Ap 1s much more critlcal for these problems
than for those discussed originally by Oswatitsch and Keune, however, and
the replacement of Ap by a constant results not only in serious loss of
accuracy in many applications, but also in loss of certain essential gen-
eral features of the solution. 1In general, results obtained by replac-
ing Ap, or du/dx, with a constant sppear to be remarkebly accurate if the
resulting values calculated for Ju/dx are, indeed, nearly constant over
most of the chord. If, on the other hend, du/dx varies substantially
over the chord, no choice of a single value for Ap will suffice to pro-
vide a useful result. This point is developed further in the course of
the following discussion and in the Appendix. Some criticisms of the
above procedure, although principally from a different point of view,
have appeared in a note by Miles (ref. 29).

In the present analysis, it is assumed once again that Ap is non-
singular and that it varles sufficiently slowly that 1t can be considered
as & constant in the initial stages of the snalysis in which a nonlinear
ordinary differential equation is established for u on the sirfoil sur-
face. The final result for u is determined by integration of this 4if-
ferential equation and restores, to a large degree, the effects of the
variation of Ap @&along the chord. The result for the first stage of the
analysis requires the solution of equation (39) subject to the boundary
conditions gilven in equation (1) and can be obtained by application of
standard procedures. The solution has two distinct forms depending on
the sign of Ap- The form associated with positive Ap 1s appropriate
for application to regions where the flow is accelerating, whereas thet
associated with negative Ap may be appropriate for application to
regions where the flow is decelerating. The analysis of accelerating flow
will be developed first. The direct problem in which the airfoll shape
is specified and the pressure distribution is sought, and the inverse
problem in which the pressure distribution is specifiled and the associated
alrfoll shape is sought are discussed for each case.
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Accelerating Flows, Direct Problems

Approximate solution of equations for arbitrary airfoil shape.- A
relation for u at the airfoil surface derived by consideration of equa-
tion (39) with positive Ap, the boundary conditions stated in equa-
tion (1), and the form of Green's theorem associsted with the left side
of equation (39) (see Appendix) 1s

+co X
e L[k g . L2 at f opfpdt

X
up = - il
:t7\P dx 'J X-£ 7\P ox -0

(L0)

where

_i e[- 7\3((::2))2:'

fr = -(1-M3) =
F e o p Ly(x-t)

The two alternative expressions for up are completely equivalent. The
Tirst is more concise and will be used in the following equations, but
the second 1s often somewhat simpler to evaluate. If the free-stresm
Mach number is unity, the double integral vanishes and up can be cal-
culated directly. The result so obtained corresponds to thet found by
application of Maeder and Thommen's proposal of reference 28. (It should
be noted, however, that the general expression for ¢ given in refer-
ence 28 is incorrect owing to improper treatment of plus and minus silgns.)

If the free-stream Mach number is not unity, equation (40) is an
integral equation, and it might appear that little progress toward a
golution has been mede. If attention is confined to the viecinlty of the
airfoil and to Mach numbers near unity, however, it is only necessaxry to
approximate Pee well locally and 1t is sufficlent to substitute Np/k
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for cpg : or du/dt in the double integral. The integral can then be
evaluated and the following relationshlp resulis:

(1AM _ U f" az/ae
M 2(7+1) J 4% Jo Jx-t
If, once sgain, kuy 1s restored in place of Ap so that, in effect, the

local value 1s used &t each point, and the subscript P on u 1is dropped,
g simple nonlinear ordinary differential equation is obtained for u

(1- ) Ve _ x azjag .

M (7+1) -J ek du/ d.x N ox-¢

Equation (1{-2) can be written in the following form upon rearranging the
terms and squaring both sides.

(k2)

2

A8 Pau G2 a [T az/ae
[u WE(+D) ] ax ~ BE(D) \ & J; P

As in the other cases, equation (43) can be solved resdily by separation
of variables, and the constant of integration can be evaluated by intro-
duction of the additional condition that eguation (%1) provides the cor-
rect locatlon X=x* for the sonic point, or point where
u=(1-MZ) U/ M= (7+1) . The result is

2

(LM TP 30 * [ a [*az/ag
l:u - —— ] D e f -d-x—l L/; d-g dxl (ll‘,'[')

Mo<>2 ( 7+1) ﬂ:Mlaoa (7 +l) Xy ~E
where x¥ 1is the value for x for which
X az/a
_i.. f _./__g_ dt = 0 ()_(_5)
dx Jo  Jx-t

This method of evaluation of the constant of integration is completely
enalogous to that employed in the analysis of subsonic and supersonic
flows, and 1s necessary in the analysis of flows with free-stream Mach
number near 1 in order to avold infinite pressure gradients at the point
of sonic velocity on smooth airfoils. This method, moreover, provides a
mechanism for the introduction of direct upstream dependence on alrfoil
shape In the subsonlc region, and its exclusion in the supersonlc region.
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The corresponding reletion for the pressure coefficient CP is obtained
by combination of equations (2) and (44) and is

2 1/3
-2(1-M,,%) 3 fx a [*az/at
PO ik B5. AN~ 1 IS E —_— =/ =_ a3t} ax 46
P M2 (y+1) M2 (y+1) o\ 8¥1 Jg S . (46)

An alternative expression in terms of the transonic similarity paremeter
is

o 1/3
= MB(y)1Y/® 3 X *1 q(z/r)/ak
= = -2 (=
= +2/83 o= 2212 L* d.xl j; Jxat il
=2£ + ap (47)

The variation of T, with £ _ expressed by equation (L47) is exact, within
o) )

the approximation of transomic small disturbance theory, for flows with
free-stream Mach numbers very near unity, and is associated with the fact
that the local Mach number distribution on an airfoll 1s independent of
the free-stream Mach number at values of the latter near unity. This
phenomenon has been discussed previously in references 30, 31, 6, and
elsevhere.

Once CP 1s known, the pressure drag 4 can be readily calculated
by use of the following relation

(e BN\

focc 8z 4y (48)

Cd d
%? UOo c
Application to single-wedge airfoils.- Sufficient theoretlcal and
experimental results are avallable at the present time to provide consid-
erable insight into the accuracy and usefulness of equation (46) or (47).

The shape for which the greatest amount of Information is avallable is
the single-wedge profile for which both theoretical and experimental pres-
sure distributlons are available. Thus, con-
sider a single-wedge profile of maximum
thickness +t and chord c¢/2 as illustrated
in sketch (i). The ordinstes of the alrfolil
upper surface sare

Sketch (i)
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Z=t.}_é.=-rx for 0<x< c¢/2

(19)
Z = t/2 = Tc/2 for x> c¢/2

and the semiapex angle 6 i1s equal, to the order of accuracy of thin air-
foil theory, t0 T. Substitution of equation (49) for Z into equa-
tions (45) end (46) provides that the sonic point is at the shoulder
(x¥=c/2) and that the pressure distribution on the surface of the wedge
at free-stream Mach numbers near 1 is

' IO N e /e
G, = Mo .,(-Z;s) Gy = 2,2 (% n i) (50)

A plot of the results for Mach
number 1 is shown in sketch (J)
together with the corresponding
theoretical results given by
Guderley and Yoshihara 1n refer-

ence 32. Although some approxima-

tions are introduced in the course - 2 ‘ ]
of the latter asnalysis, the results 2 a P Ewh::':o"f 2
are generally regarded as virtually /25 © Upper surface
an exact solution of the equations a) /o @ Lowsr surfoce
of transonic small disturbance / 006
theory. Also included in sketch (J) ! Ma®l B Upper surface
are experimental results for M=l a oI Lower surface
obtained in the Langley annular tran-

sonic wind tunnel snd reported by Sketech (J)

Habel, Henderson, and Miller in ref-
erence 33.

o -
Since the comparisons shown in ° €m=1.260 wh%

sketch (J) indicate that equa- 1058 7

tion (50) provides an approximate ' o _— ’;/L’/é/:'f'

solution for the pressure distribu- '_434\_’,//‘ //,f;i

tion on a single-wedge profile //1 9 ///‘.-::f"é/’ﬂ $o=0

at M=l that is probably satisfac- ol L A A

tory for most purposes, and since S|/ 7 2

the variation of 'CP with £, given § |[// A '

by equation (47) or (50) is exact, K , /,/A'/'

within the .framework of transonic [?},’/’ weeeree= Ref, 32

small disturbence theory, at M =1, I ¢ e-.887 T e

the principal question remaining in oliL =826

the evaluation of the degree of !

approximation afforded by use of

equation (50) is to define the range 5

of ¢, or Mach number, over which Sketch (k)

it spplies. Accordingly, sketch (k)
has been prepared to sumarize the
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results glven previously by Guderley and Yoshihare for Mach number 1

(ref. 32), by Vincenti and Wagoner for Mach numbers slightly greater than
unity (ref. 34), and by Yoshihare for Mach numbers slightly less than
unity (ref. 35). The latter two sets of results were obtained by lengthy
numerical calculations and, together with the results for Mach number 1,
are generally regarded as being very close to those that would be given
by exact solutions of the equations of tremsonic small disturbance theory.
The results are plotted in terms of Cp-zgOo so that the pressure distri-

butions for Mach numbers very nesr unity should determine a single line,
It can be seen that the variation of T, with ¢, indicated by equa~-

tion (47) or (50) holds untll the absolute value of ¢, 1s nearly one-
half. At greater values, the results begin to tend toward those asso-
ciated with purely subsonlc or purely supersonic flows, and equations (hT)
and (50) are no longer applicable.

Experimental measurements of the flow around single-wedge profiles
at free-stream Mach numbers both less than and greater than unity have
been made by ILiepmenn and Bryson and reported in references 30 and 31.
Results were obtained for three different profiles having semiapex angles
of Y- l/2 s T- 1/2 , and 10°, Plots of the experimental pressure distri-
butions for the test Mach numbers closest to unity for each profile are
shown in sketch (1) together with the theoretical pressure distribution

_2 - L.
—l;-4*' ET*“ 8=i0*
/ /!
0 3 ¥ 3
0 A 5 ) L /5 0
8,26, |— 800 _FL T — ol AT — Eq (50] é
2 _E pad
//’ Experiment ref. 30 /ﬁ Experlment ref, 30 // Experiment ref. 30
A €0 M & {0 Mg ; £ Mo
7 —— -665 900 Fd -~ -688 860 —- -424 892
f — .711 =.|3o - 179 L210 —— 636 1207
4 1 —r 1 1 1 1
Sketch (1)

calculated by use of equation (50). Additional experimental data for
other Mach numbers are not included on sketch (1) since those shown are
already for values of £, that are somewhat outside the range of valid-
ity of equation (50). Only the theoretical results given by equation (50)
are Included since examination of the data reveals that these results dif-
fer less from the theoretical results shown on sketch (k), for Mach num-
bers nesr unity, than the experimental curves differ from either set of
theoretical curves, or even than the experimental curves differ among
themselves. Perhaps the most prominent discrepancy is that which occurs
near the shoulder. Theory indicates that sonic velocity (Cp-2£,=0)

occurs at the shoulder, whereas the experimental data, particularly that
of Liepmann and Bryson, consistently indlcate that sonic velocity occurs
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forward of the shoulder. It 1s Interesting to observe that this
discrepancy is greatest for the thinnest alrfoll tested.

The foregoing results may be contrasted with those obtained by
direct use of equation (41) in which case CP_2§°° is found to be pro-
portional to l/.J')\Px. It 1s clear from thls comparison that there is no
constant with which Ap can be replaced that would provide a satisfac~
tory solutlon for the pressure distribution on & single-wedge airfoil st
free-stream Mach numbers near unity.

The pressure drag of single-wedge profiles at Mach numbers near 1
can be found easily by integration of equation (48) with the relations
given by equations (49) and (50) substituted for Z and Cp. The result
is

[Mm2(7+l)]l/ P 2(§) PQ%) =28+ 1.758  (51)

+5/3

where [' represents the gemma function. Thls result compares very
favorably with the value of 1.75 for & =0, or Mach number 1, glven by
Cole in reference 36 as that obtained by numerica.l integration of the
pressure distribution given by Guderley and Yoshihara in reference 32.
Cole's own theory for the drag of a single-wedge airfoll at high subsonic
speeds, which is fundamentally somewhat less accurate than Guderley and
Yoshihara's theory, gives the value 1.6T7 for Eo=0

Application to biconvex circular-arc airfolls.- In addition to data
for three single-wedge profiles, Bryson also gives in reference 30 exper-
imental results for transonic flow around the front half of an §.8-percent
thick biconvex cilreular-asrc airfoil followed
by a straight section as illustrated in
sketch (m). Since the pressure distribution
on the curved portion of this proflle is the
same at Mach numbers near unity as that on

z=2ec[X- (22

___...'.':IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIJ

the front half of a complete circular-arc ° % t
airfoil heving the same thickness ratio, and v={-.088
additional experimentel date are availeble

for the latter airfoll although for other Sketch (m)

thickness ratlos, the following analysis 1s

developed for a complete blconvex circular-arc airfoil. It is moreover
sufficient, in thin airfoil theory, to approximste the ordinates Z for
& circular-arc airfoll by those for a parsbolic-arc airfoil, thus

Z_aT[_-()J (52)
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where T 1s the thickness ratio as

indicated in sketch (n).

of

Substitution
this relation for Z into equa-

tions (45) and (47) yields the following
result for the pressure distribution on
the alrfoll surface.

Cp = 26,2 _15 [Zn (4 %)

o<

Tp-2£q

—— Eq. (53}

Experiment
Ref. 30 t=088

o Mo

935 —
Lio

-.388
.870

]

Sketch (o)

1/3

J

mlu:

+8()

(53)

gketch (o) shows a comparison
of the pressure distributiomns for
Mach numbers near unity calculsted
by use of equation (53) with those
obtained from Bryson's experliments
with the half airfoil. As for the
single-wedge profile, the results
are again plotted In terms of
C -2t,, since experimental results
are avalleble only for Mach numbers
somewhat different from unity. It
can be seen by comparison of
sketches (1) and (o) that the theo-
retical and experimenhtal results are
in much better agreement for the
front half of & circular-arc alrfoll
than for single-wedge profiles.
Experimental pressure distributions
for tramsonic flow past four complete
biconvex circular-arc airfoils having
thickness ratios of 6, 8, 10, and
12 percent have been given by Michel,
Marchaud, end Le Gallo in refer-
ence 37. Theilr results for Mach
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number 1 are plotted in

sketch (p) together with Experiment (X), =50

the theoretical results _a| ref 37 il 4 B
calculated by use of equa- T B

tion (53). These results | ©06 g g > o
are presented in terms g'?g g /(E‘q (53) 3
of because transonic v 12 _ )

theory indicates that the
pressure distributione for To =
all four airfoils should )
then define a single curve 0 0
independent of the thick-

ness ratio. Results for @f
Mach numbers other than gf;/
unity are not included omn ol =
this plot because the
variation of Tp with £,

for smell E indicated M.=1

by equstion ?11-7) and sub- a @

sequent relations is not o 2 4 S 8 10
only simple but is amply xee

verified by the preceding Sketch (p)

comparisons and by similsax
discussions elsewhere in the literature of transonic flow. It can be
seen that the theoretical and experimental results are in substantial
agreement. The most notable discrepancy is that found near the trailing
edge, and can be attributed to flow separstion induced by boundary-layer
shock-wave lnteraction. It can also be seen that the agreement between
theory and experiment is not so good for the complete airfoils, particu-
larly the thinner ones, as for the half airfoil. Part of the discrepancy
for the complete airfolls may possibly be attributed to the experimental
technique in which the airfoil is simulated by & bump on the tunnel wall
and is hence imbedded in the wall boundary layer. Some comments on this
method of testing have been given recently by Carroll and Anderson In
reference 38.

The pressure drag of circular-arc airfoils at Mach numbers near 1
has been found by numerical integration of equation (48) with the rela-
tions given by equations (52) and (53) substituted for Z and CP and 1is

M2 (7+1)1%° g

5/3

=T = W7 (54)

The pressure drag of the front half can be evaluated in the same way by
changing the upper limit in equation (48) to c/2 and is

Ed = 2§°° + l.l3 (55)

The integrations required to determine the drag resulte given in
equations (54) and (55) were evaluated numerically using Simpson's rule
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together wilth an anelytic determinetion of the contribution of the reglon
in the lmmediate vicinity of the leading-edge slngularity. Sufficiently
fine intervals were used that the resulting values are estimasted to be
accurate to within about one digit in the third significent figure, as
Judged by comparison with the results of similar calculations made with
wlder intervals. It 1s necessary to use very fine intervals, particu-
larly near the nose, to achieve such accurascy, and intervals as small

as 0.00005c were used in some cases.

Application to a family of airfoils having the point of maximm
thickness displaced aft of the midchord station.- The primary object of
this present section is to present some comparisons of celculated and
measured pressure distributions at Mach number 1 on & number of specific
airfoils that have the point of maximum thickness aft of the midchord
station. The experimental data are from reference 39 by Michel, Marchaud,
and Le Gallo, and are for members of the family of airfoils having ordi-

nates given by
SNEON )

where A and n are constants for each airfoil and n is greater than
unity. The values selected for A and n determine the thickness
ratio T and the location (x/c)Z of the point of maximm thickness

according to the relatlons

(5) -G - on

. 2
. (%)n-1-<%>n-l _2A(n-1) (58)

5/ (n-1)

The blconvex circular-arc alrfoils discussed in the preceding section are
special cases of the present famlly that correspond to n=2. The point
of maximum thickness is located forward or aft of the midchord station
depending on whether n 1is less than or greater than 2. The particular
alrfolls tested by Michel, Marchaud, and Le Gallo are specilal cases that
correspond to either n=3.38 or 6.05 and have the point of meximm thick-
ness at 0.60 or 0.70 chord. As in the earlier work by the same investiga-
tors on biconvex ecircular-arc airfoils, the results were obtained by
simulating the airfoil by a bump on the tumnel wall and are again subject
to criticism regarding the influence of the wall boundary layer.



NACA TN 3970 31

Substitution of equation (56) for Z into equations (45) and (L6)
yields the following result for the pressure distribution on the airfoll
surface for Mach numbers near unlty:

Ep . [1\5002(:]/_:)3]1/8 c,
/( 2 yi1/8
o2/ (n-1) x n
= 2f - ri — m X - (:l)r I'r(l-+i))< )
1/3
o) [ (-_)J (= 1)
(59)

where I represents the gamma function. If m is any positive integer
greater than unity, the following relations are useful for evaluation of
the gamma function:

r(m) =1-2:3 . .. (w-1) = (1), r(1/2) = V=
I‘(m+%>= -JT:-EJ:% . .g . (_%)

Substitution of n=2 in equation (59) reproduces equation (53) for
the pressure distribution on biconvex circular-src airfolls as a special
case. Equation (50) for the pressure distribution on a single-wedge air-
foil can also be obtained as a limiting case by setting n=o and noting
that the chord of the wedge is designated here as ¢ rather than c/2.
Theoretlecal pressure distributions on the airfolils tested by Michel,
Merchaud, and Le Gallo are obtained from equation (59) by substitution

(60)
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of the values 3.38 and 6.05
for n. Sketches (q) and
(r) show comparisons of the
theoretical and experimentsl
pressure distributions for
My=1 for the two groups of
alrfoils. IExcept for the
discrepancy near the trall-
ing edge which can again be
attributed to boundary-
layer shock-wave inter-
action, 1t can be seen that
the theoretlcal and experi-
mental results are in at
least qualitative agree-
ment. Some differences
occur, however, in the
levels of the pressure dis-
tribution curves. Compari-
son with the resulis for
the circular-arc airfoils
shown in sketch (p) reveals
that the same trend is in
evidence for those alr-
foils, although to & lesser
degree, and that the differ-
ence between the theoretical
and experimental results
Increases as the point of
maximum thickness moves
rearward. It 1s not clear
at the present time whether
this discrepancy is to bhe
attributed prineipally %o
the shortcomings of the
theoretical or the experi-
mental results.

. Application to a
femily of airfolls having
the point of maximum thick-
ness forward of midchord
station.- The test program
of Michel, Marchaud, and
Le Gallo reported in ref-
erence 39 and discussed in
the preceding section also
included tests of each of
the airfolls reversed in
the wind tunnel so that the
point of maximum thickness
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is located forward of the midchord station. The particular airfoils
tested are thus speclfic cases of the family of profiles described by
equation (56) with x/c replaced by 1-(x/c); that is, the ordinates are
glven by

-a 1-§-<-§)n (61)

oln

where A and n are again constants for each airfoll and n 1is greater
than unity. The values selected for A and n determine the thickness
ratio T and the location (x/c)g of the point of maximum thickness

according to the relations

—
-2 - (B) ©

 ann 6
T /(o) (63)

Biconvex circular-arc ailrfoils are special cases of the present family
that correspond to n=2. The point of maximum thickness is located forward
or aft of the midchord station depending on whether n is greater or less
than 2. The particular airfolls tested by Michel, Marchaud, and ILe Gallo
are special cases that correspond to either n=3.38 or 6.05 and have the
point of maximum thickness at 0.40 or 0.30 chord.

Since the integrations encountered when equation (61) is substituted
in equations (45) and (46) for the determination of Cp &are more diffi-
cult than those encountered in any of the preceding examples, no general
formuls will be given for arbitrary n. Two formulas of more restricted
generality are given, however. One is appliceble when n 1s any Integer
greater than unity, the other when n is one-half plus any positive
integer. The first is
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1/
0\

- 3 (o1 -
= 2t -2 — n-1 -
G £ oo im \ oo (n-1)% in =+

n-1

-x/c)? +

2(n-1)r(n+l) Jx L ( L
= - 1
v=1 I'(n-v)I <v+ 2)

x \1/3
5 D=1 1 N 1 (-x/c)wp‘
[I‘(n+l)] "VZ; P(acv)r (v.,% ) p=t I'(n-p)r <”+% ) "
x¥*
(64)

x
where the symbol Ix* is used to denote the difference between the pre-

ceding expression with first x and then x* substituted for X, that
is,

£(x) [, = £(x)-£ (%)

where x¥*, the location of the sonic point » 1s found from

n-1
n-1+r(n+l) 7 (-x%/c)” =0

v=1 I'(n-v)I <v +%> )

and T refers again to the gamme function. The second is
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n 2 1/8
AT Ba
T, = 26,2 h_3 <’-l _; (0-1)2 10 X - 1+J'—c
T ¢ -Nxfe

(o fE) () (- fE) = o f)] e

et ) (Dt ) [ )

(-—)zn-sv
( )F(an -2) 2 (2n-2-v)F(2n-2-v) 2n2v -j_cln j-_+ x/c)

n-

b ede) T (e
= J—< —>vzl n-ltv LLZ.'L F(n -]2-‘+v-u> n'%“”“
1"% x/c n-% l-é v
<1f— JJ:/} R ) 2 (2) =
< \/2
n-2 n % V-1 -z
B®x F(n % V) z F(n 2 “)( E)-H-L |:v+3;l' <lv+§>}]\ > (65)
SR p=1
wvhere B = Z , and  F(£) re)
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Attention 1s called to the fact that v and yp are positive integers so
that when n=(3/2) all the summations drop out.

Again x* 1s the location of the sonic point and 1t is found from

n-32 Neorrs n-3 ver
2 f + N x* ' -
n-]_-]a(]_-i‘i .’ﬁzn}__x_/c._BZF<n-.J_-->E’_",(-_xi =0
c c ) c ¢
V=1

1 - ~Nx¥*/c

Substitution of n=2
in equation (64) agein
reproduces equation (53)
for the pressure distribu-
tion on biconvex circular-
S, 2 arc airfoils. Sketches (s)

Y% and (t) show comparisons
o _ of the pressure distribu-
- tions measured at Mach num-
2/ Experiment (%)Z =40 _| ber 1 by Michel, Marchaud,
Y ref. 39 mox and Le Gallo with those
T calculated by use of equa-
© .06 tions (64) and (65). The
/ @ 08 experimental results shown
7 Mol @':g in sketch (s8) are for air-
4 ® N  foils that have the point
o 2 4 6 8 10 of maximum thickness
x/c located at 0.40 chord cor-
Sketch (s) responding to a value
4 , ~ for n of 3.38. Since
Eq. (64) L5 0 0 0 J o l results could not be cal-
3 © : culated analyticelly for
f(o this value for n, theo-
-2 e retical results are shown
/o for both n=3.0 and n=3.5.
ol _A’ The corresponding locations
P - for the point of maximum
thickness can be readily
calculated using equa-
| tion (62) end are 0.k23
o[ Experiment (%)z,.. =30 and 0.394 chord. Similarly,
ref. 39 % the experimental results
T shown in sketch (t) are
°© .08 for an sirfoil that has
[ Moz the point of maximum thick-
it ~ness located at 0,30 chord
o 2 A4 6 8 I0 corresponding to a value
x/c for n of 6.05; whereas
Sketch (t) the theoretical results

n=35

Eq.(65) \ ¢
G
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are for airfolls that have the point of maximum thickness located at
0.301 chord corresponding to a value for n of 6.00. These results con-
tinue the trend noted in the preceding section that the asgreement between
the present experimental and theoretical results improves as the location
of the point of maximum thickness moves forward along the chord. The
principal discrepancy remaining is, in fact, reduced to that near the
tralling edge associated with boundary-layer shock-wave interaction, and
1s therefore beyond the scope of any inviscid theory.

Accelerating Flows, Inverse Problems

Approximate solution of equations for given pressure distribution.-
Although all of the preceding discussion 1s concerned with the calculation
of the pressure distribution on an airfoil of specified geometry, an
equally important problem In many engineering situstions is the design of
an airfoil +to have a specified pressure distribution at a given Mach num-
ber. This poses no new problem in the analysis of purely subsonic or
purely supersonic flows by the present methods because the specification
of CP permits the determination of CPL through application of equa-

tion (31) or (17), and the inversion problem is reduced to the familiar
inversion problem of linear theory. The necessary relation for flows with
free-gstream Mach number near 1 can be derlved from consideration of equa~
tion (L42) as an integral equation in which u and du/dx are given and

the unknown appears in the Integrand of a definite integral. Thls equa-
tion can be inverted readily since it has the same form as the relation
encountered in the solutlion of Abel's integral equation (see, e.8.,

ref. 40, pp. 483-L484). The inversion thus has the form of Abel's integral
equation, and is the following in the present application:

b [ SEslE s )

The desired relation for the ordinates Z(x) of the airfoil caen now be
found by & second integration, and is the following if it is assumed
that Z is zero at the leading edge (x = 0).

X X3 2
1 {k (1-M, )Uoc] du A4t
Z o= 2% o= 2 dx - S fre ffOU G5
U N % ~/x‘* ljc: [u Mo (741) dt Jx3-E

1 [x ¥ xl[_(l—M:)Um} du _ ae
T UeN T ~/<: dxlu/c: Y TR2(G) At gt (67)
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vhere Z¥* 1s the ordinate at the point x* where u is zero. It is
interesting to note that the two altermative expressions for 2 lead

to identical results although the apparent regions of dependence, as
indicated by the limits on the integrals, are quite different. The same
result expressed 1n terms of CP or GP is

1 M () 1 (-2 1 /%% _ag
“T3d7 2 fo dxl»/; [CP Moo(7+l)} z s

or

X X3, ac.
2ot [Can [ @pa [ o2 (69)
2J2x Jo * o At fxg-t

A simple appllcation or check of these relations 1s furnished by substi-
tution for of the relation given in equation (50) for single-wedge
profiles, whence Z is found to be equal to  6x between x=0 and x=c/2.
In the same way, substitution of equation (53) for CP leads directly

to equation (52) for the ordinates of a circular-arc airfoil, etc.

Application to airfolls with constant pressure gradient.- An example
that permits an additional comparison with an existing theoretical result
given by Guderley in reference 41, is furnished by consideration of the
problem of determining the shape of an alrfoll having a constant negative
pressure gradient at My=1, thus

o=l (-8 )= (3-%) (10

where A = -dCP/d(x/c) 1s a positive constant. Substitution of this
relation for CP in equation (68) and integraetion leads directly to the
following result:

) (72)

a/2
z_2 /y;lAs/e <§.> xx 2

The special case considered by Guderley 1s obtained by ilnsertlion of the
values x¥/c = 3/4 and A = 6/5, whence equation (71) reduces to

o] S
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(2 | (3)

Sketch (u) shows a scale drawing of
the profile calculated by use of I Y Eq.(72)
equation (72) and of that given by z '
Guderley. It is evident from the 0
sketch that the present theory indi-
cates larger values for the ordi- G253
nates Z than are given by Guderley. _, Pl
Although the latter results are glven 0 10
only in graphical form, and are hence

difficult to determine with precision, Sketeh (u)

the two sets of values for Z appear

to be related by a constant ratio of

epproximately 9 to 8.

” (1--1-5-3) (72)

(ref. 41)

o<

The case considered by Guderley and discussed above results in a
shape that does not close at the stern. It can be seen immedlately from
equation (71), however, that & closed airfoil will result if x¥*/c 1is
equated to 2/5, in which case equation (71} reduces to

Z _ 4 +1 ,3/2 x V7% x)
s B[4 o

A plot of the results is shown in 1 .

sketch (v). Eq. (73)
Ze

0 ué

Cora(3-5)

Sketch (v)
Decelerating Flows

Although it 1s clear that the preceding relations are not appropriate
for the analysis of flows with free-stresm Mach number near 1 that decel-
erate smoothly through sonic velocity, it might appear that the proper
expressions could be derived by formal spplication of the procedures des-
cribed in the preceding section for positive Ap to the approximate solu-
tion of equation (39) for negative Ap. The a.nalysis leads, in the absence
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of contributions from shock waves, to the followling relation for u at
the airfoll surface instead of equation (L4O)

c {0 (o]
U df az/ag 1 9 f f
vp = - —Do & ey = 2 at opf ag  (7h)
F ~tap &X Jx NE-x Ap 0% Jeooo X ¥

where

[@(x-c)z]

- N
= —(1-Moo2)q>§§ ’ °p = ng_:x)-e +{8-x)

The principal difference between the results for the two cases is that

the value of u(x) indicated by equation (T7h4) depends on conditions down-
stream of the point x, whereas that indicated by equation (40) for posi-
tive Np depends on conditlons upstream of x. This difference is a
fundemental property of equation (39) and necessitates a change in the
argument required to disregard additional contributions from shock waves,
because now 1t is the oblique shock waves situsted downstream, rather than
upstream of x, that furnish a contribution to u(x). If, however, there
are no oblique shock waves downstream of x, or if the contributions
resulting from additionsal integrals over the shock surfaces are dlsre-
garded so that equation (74) can be used as & starting point in the ansal-
ysis, the following result is obtained by proceeding in & fashion
enalogous to that employed in the derivation of equation (47) from (40O):

1/3
2
- 3 M*la [%alz/r)/at
=2t + 2 —f —f — =) ax (75)
CP x x¥* dxl X3 ’.E:-xl *

The symbol x* again refers to the location of the sonic point and is
equal to the value for x for which

a ¢ az/ag a
— E =0 (76)
dx I{ J E-x .

The corresponding relation for the shape of an sirfoil associsated with a
given pressure distribution at some free-gstream Mach number near unity
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can also be found and is the following, agaln assuming that Z 1is zero
at the leading edge:

(77)

Yo T fx e fc (Cp-2,,) [ch/dg a
2'\/-2—11: o X1 JE-x3

No further use is made in this paper of equations (74) through (77)
for decelerating flows at free-stream Mach numbers near 1. As will become
more evident at a later point in the present discussion, it would appear
necessary to use such formulas for the analysis of flows decelerating
through sonic veloecity, but the region of dependence in these relations
is such as elther to cast suspicions on their applicability or to require
the occurrence of exceptional coincidences. On the other hand, two-
dimensional flows that decelerste smoothly through sonic velocity appear
to be very exceptional physically. Further investigatlion is needed before
additional remerks can be made regerding the role of the parsbolic case
with negative Xp 1n the analysis of transonic flows.

The next section will be concerned with an altermative analysis of
certain cases in which decelerating flows occur.

Combination of Accelerating and Decelersting Flows

The calculation of the pressure distribution at Mach numbers near 1
on an airfoil having such a shape that the velocity increases over part
of the chord and decreases over the remainder cannot be accomplished by
direct application of any of the relations developed in the preceding
sections. On the one hand, the parabolic method described for flows with
free-stream Mach number near 1 permits the analysis of flows that pass
through sonic veloeity, but falls when the velocity gradient is zero. On
the other hand, the elliptlic and hyperbollc methods described for subsonic
and supersonic flows permit the analysis of flows with zero velocity gra-
dient, but fall 1f the local velocity is sonic. The breskdown in each
case is assoclated with the fact that the basic partial differential equa-
tion for each case, that is, equation (8), (21), or (39), assumes a degen-
erate form when A 1is zero. Such cases are, nevertheless, interesting
and important since they can occur in practical applications, and the pre-
sent section is concerned with theilr discussion. The procedure adopted
1s based on the idea of joining together various of the results derived
in the preceding sections in such a way that the failings associated with
vanishing A are avolded, rather than on s complete re-analysis of the
problem from a sufficiently general point of view to encompass the entire
problem in a single sweep.

In order to fix the ideas, consider the problem of calculating the
pressure distribution at Mach number 1 on the airfoil with cusped trailing
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® edge illustrated in sketch (w) for
which experimentel dets are gvailable
E"”ﬁmeﬂ ref, 42 from reference 42 by Michel, Marchaud,
Meo™t . end Le Gello. The front half of this
-2 v alrfoll is the same as that of a

— . ° biconvex circular-arc alrfoil having

G a thickness ratio of 0.10, but the rear
half is shaped in such a manner that

an inflection point is located at

* 0.75 chord and that the trailing-edge
angle 1s zero. The ordinates and
slopes of the rear half of this air-
foll are shown graphically in

08 o sketch (x). No analytic expression

’ 4z 4z is given in reference 42 for the oxdi-
ax == nates of the rear half.

alx

Sketch (w)

4 -1
>\\\\ The pressure distribution on the
0 N SN N front part of the alrfoil where the
5 6 7 .8 9 Te} passege through sonic veloclty occurs
can be calculated by use of equa-
Sketch (x) tions (45) and (46), since it does not
depend on the shape of the rear half of the alrfoll, This means that the
pressure distribution on the front half of the airfoil described above is
given specifically by equation (53) for x/c between O and 1/2. It 1s
clear that the pressure distribution on the entire rear half of the air-
foil cannot be determined by use of equations (45) and (46) because the
results so calculated indicate a point of zero pressure gradient in the
vicinity of the inflection point. Although this detaill, in itself, is
not incorrect, it signals the breakdown of the parabolic method that
occurs when A 1s zero. Positive evidence of the breakdown is provided
by the fact that the calculated pressures decrease downstream of the point
of zero pressure gradlent rather than increase as indicated by the experi-
mental data shown on sketch (w) or by simple considerations of supersonic
flow. These results, furthermore, cammot be Jjolned to those obtained by
use of equations (75) and (76) for the part of the airfoil downstream of
the point of zero pressure gradient hecause the two sets of equations do
not indicate the same locatlon for this point. Thie situation should not
be too surprising slnce the procedures should not be expected to fail
abruptly when A 1is precisely zero, but gradually as A approaches zero.

gfﬂN
o
;/f

There exists another possibllity for the determination of the pres-
sure dlstribution on the rear half of the present airfoil by Joining
together solutions. It is to use the formulss developed for supersonic
flow, but with the final constant of integration adjusted so that the
pressure is equal, at the point of connection, to that given by the solu-
tion for the forward part of the airfoil. This procedure corresponds to
the use of simple wave theory for the calculation of the difference in
pressure between an arbltrary point on the rear of the alrfoil and the
point of conmnection. In this way, the following equation results for
the pressures on the rear of the airfoll at Mach numbers near unlty:
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2/3

T2k, = -2 [- (Eﬁ‘;ﬂ) T/z - [zr (x) -2 (x)] (78)

3
2t
where 2! ' refers to dZz/dx, and EP(X) 1s the value of Cp at x=X.

The most convenient point for Joiming the two solutions in the appli-
cation described in sketches (w) and (x) is at x/c = 0.50. Then the

pressures on the forward half of the airfoll can be calculated directly
by use of equation (53), the values of Cp(X) and Z!(X) are

EP(X)=Ep<i2’.>=2gw-2[.i_(-1+znu):ll/s, z*(%) =0

and the following expression results for the pressures on the rear helf
of the airfoll at Mach numbers near unity:

(79)

= _ A+ 1° 6 2/e
Co 72/3 Cp = 2¢ -2 ['\/;(-l+ln L) --2%%} (80)

Sketch (y) shows & compari-
son of the experimental I | ! I /e\
pressure distribution for _4_—G-'El')r:eor_y t ref 42 /
Mach number 1 glven by periment re. / G\
Michel, Mercheud, and Moo=l > \
Le Gallo in reference 42 ) y \
and the corresponding theo- -2 —1~ x
reticel values calculated T o / °
using equations (53) and —

(80) together 7i'bh the _— L
values for d4Z/dx given O LS - =
in sketch (x). The theo- 0 %A/Am\w WA = 0
retical end experimental -
results bear ebout the ° /
same relationship to each 2 Vi
other as those shown pre-

viously for biconvex Sketeh (y)

clrculaer-arc alrfolls

although effects of boundary-leyer shock-wave interaction extend over a
larger fraction of the chord of the cusped airfoil. This difference 1s
in agreement with the results obtained from schlieren photographs end
glven in reference 42 that indicate that the shock wave meets the airfoil,
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at Mach number 1, at 78«percent chord for the cusped airfoil and at
g5-percent chord for the bilconvex circular-arc alrfoll of the same
thickness ratio.

It is apparent that the pressures computed over the rear half of the
girfoil by using equation (80) will tend to be somewhat too negative
because the use of this relation corresponds to the use of simple wave
theory and hence disregards the influence of a family of incoming compres-
sion waves arising from the sonic line. Some idea of the magnitude of
this effect can be gained by examination of sketch (z) which shows a

comparison of the pressure distribu-
| &3) ,g% tion on biconvex circular-arc air-
-4 _“_Egk7& —2% foils at Mech number 1 calculated
% using equation (53) for the entire
7 alrfoil, with those calculated using
-2 o equation (78) for various fractions
T, v of the chord.

o

R

A further example involving

K accelerating and decelerating flows
/ at Mach number 1 is furnished by
2|-A ~ examining the case of the symmetrical

/ Mes'! double-wedge airfoll of arbitrary

thickness ratlo for which a solution
Sketch (z) has been given by Guderley and
Yoshihara in reference 32.
L /,'_:q @n Sketch (a') shows a plot of their
-4 — T result together with the correspond-
*Tig;%g:: ing result calculated by the proce-

dures described sbove. The result

-2 . for 0<x<c/2 is calculated by
T, use of/equa.tlon (50). That

for c/2<x<c¢ 1s calculated by use
0 *dev“ V““‘V3§§£ (L of the following equation which is
j0 ©Obtained from equation (78) by
Dl on equating C.(X) to 0, Z'(X) to T
2 af”’ﬂigkﬂﬂ q .g D ’ ’
e and Z7(x) to ~-T.

/ Mos| T, = -2(3)

4 1

o
O o)x

E
OOP‘

2/s

(81)

' The difference between the two pres-
Sketch (a') sure distributions on the rear half
of the airfoill is again the result of the neglect, in the present analysis,
of the contribution of the family of incomlng compression waves arising
from the sonlc line.

It 1s evident from these three examples that the present procedure
of joining solutions is capable of ylelding results that are at least
qualitatively correct and that, although somewhat greater accuracy is
undoubtedly desired, this procedure may be useful until such time as a more
general anslysis of accelerating-decelerating flows is accomplished.
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COMPARTSON OF RESULTS FOR MACH NUMBER 1 WITH
THOSE FOR OTHER MACH NUMBERS

The remsinder of this report is concerned with the discussion of some
selected examples that illustrate the relation between results for Mach
number 1 and those for other Mach numbers. This discussion is divided
into two parts. The first is concerned with comparisons of pressure dis-
tributions on the same airfoil at different Mach numbers, and the second
with pressure drag.

Pressure Distribution

Attention is directed in this section to comparisons, for a number
of alrfolls, of the theoretical pressure distribution for Mach number 1
with that for the highest Mach number for purely subsonic flow and that
for the lowes't Mach number for purely supersonic flow. Pressure distri-
butions for these two Mach numbers, designated more briefly as the lower
and upper critical Mach numbers, respectively, are of particular signifi-
cance not only because they represent the results associated with the
bounds of the tramsonic range, but 2lso because they are typical of the
pressure distributions for ell purely subsonlec or purely supersonic flows.
All of the theoretical results shown are calculsted by application of the
general expressions derived in the present paper. The resulis for Mach
number 1 are the seme as discussed in detail in the preceding section.
Subsonic pressure distributions are calculated by use of equation (28),
and supersonic pressure distributions
by use of equation (15). The lower =3
critical. Mach number is determined M0 .
from equation (30) by replacing CPi -2 LN

cr

T |
Lower cﬁﬁcall

with the most negative value of CPi l /
- %

that occurs in each case, and solving e

for M,. The upper critical Mach 0 3 w§§§4
number is determined from equa- 0 rﬂmw\\m\ R
tion (16) by replacing (dZ/dx).p o N
with the value of dz/dx at the ; t
leading edge and solving for M. Cp. e

o<

; M= i~
Consider, first, the single-wedge .2IF 4
alrfoll for which the pressure distri- i ////
bution at Mach number 1 is gliven by 3 ’///U;percﬁﬁca|_
equation (50) and illustrated graphi- P Ml 31N
cally in sketch (j}). Sketch (b!) R - -
shows a comparison of this result for .
the specifie case of a wedge having & ///> 8=
semiapex engle 8 of 0.10 raedians

with those for the upper and lower

critical Mech numbers. The lower Sketch (b?)
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critical Mach number is, of course, zero because the velocity is sonic at
the corner for all free-stresm Mach numbers less than the upper critical.
The pressure dlstribution for Mach number O is glven by

_ __ 20 2x/
Cp=Cp =-=2in ———l_&;c (82)

-3 The three curves shown on sketch (b')
suffice to show that the pressure
distribution on a single-wedge air-
-2 Tomer cntmal-/rf' — foil at Mach number 1 bears a much
g ¢ 'O~>///{ closer resemblance to that at the
% @™V lower critical Msch number than to
_—! g that at the upper critical Mach num-
’ ber. It is interesting to note,
moreover, that the difference between
y; the pressure distribution at Mach
o / /,/' 5 number 1 and that at Mach number O
I . < is very nearly constant across the
/// pd chord.

O
o>

I” 7~
/ al
/// /,/ \Upgercﬁtcal Consider, next, the half

AN
\

——

=208 circular-arc alrfoil for which the

3 ° pressure distribution at Mach num-
/ / ber 1 is given by equation (53) and
/

N

illustrated graphiceally in

vy sketch (o). Sketch (c!) shows a
comparison of this result with those

Sketch (c!) for the upper and lower critical Mach

numbers. The computation of the

pressure distribution for the lower critical Mach number involves the use

of the following expression for CP which 1s obtalned by integration of

the suxlliary relation of equation %28) with Z replaced by the expres-

sion given in equation (52) for 0<=x<c/2 and by te/2 for x>c/f2:

T[1+<-%3‘->zn%£] (83)

The results illustrated in sketch (c') displey a remarkable property that
the subsonic part of the pressure distribution at Mach number 1 differs
from the pressure distribution at the lower critical Mach number by nearly
a constent, and that the supersonic part of the pressure distribution 4if-
fers from the pressure distribution at the upper criticel Mach number by
nearly the same constant, although of opposite sign.

Al

Cp, = -
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In order to investigaete this difference further, the pressure dis-
tributions at the upper and lower criticel Mach numbers have been calcu-
lated for the complete biconvex circulesr-arc sirfoll and each of the four
related airfoils hsving meximum thickness forward end aft of the midchord
station for which the results for Mach number 1 are shown in sketches (p) s
(0), (r), (s), and (t). The results are shown in sketch (4!). It can be

¢ | T
-4 CDEO e(nﬂ fafO>
”,..-\ /=- =_L54\ — —
ap / \\\'&n .20 ,/.\;>~//€0)‘-|65 Em | /> /. < 3
,‘l {"\ ’r" / ;\ 1 - / /\>_ _\/
oYsesatetnl 10 0 Lcraelai, 10 0 Ledractmn, 0 €
[ w346 LY NV fesr08| N
/ / //\ £=266 [~
4t /
J/ ,
/
n=6 n=3.5 n=2
8
-8
=0 =O7/
—— Mach number one _4 £89>1 b /
----- Lower critical % 56"-64\—-“"\/ // £.=-190 _\’ 4{ /
—— Upper critical <1 /x\ // \
00 il N0 0 LI Vo x
P > \ P <R 3| ©
A 1 1 1 és)18
~ e 147 =
4 f
nl=3.3'8 n|=6'015
Sketch (4')

seen that the three pressure distributions for each airfoll bear the same
general relstionship to each other as noted above, although the difference
between the pressure distributions 1s not always gquite so constant as 1s
observed for the wedge and circular-arc profiles.

Pressure Drag

Once the pressure distribution is known for & glven airfoil, the
pressure drag can be obtained directly by integration of equation (48).
The corresponding expression in terms of Ed. and Cp is
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Nt S A o a(z/t)
Ca = oy fo %md<§> (84)

Although the present theoretical results only permit the calculation
of pressure drag for Mach numbers nesr 1 and for Mach numbers greater than
the upper critical, these results, together with existing theoretical and
experimental results, can be used to sketch the variation of pressure drag
with Mach number throughout the transonic renge. The airfoll for which
the most information is available 1s, of course, the single-~wedge profile
for which an approximate solutlon for Mach numbers less than 1 has been
given by Cole (ref. 36) and improved recently by Yoshibara (ref. 35),
that for Mach number 1 by Guderley and Yoshihera (ref. 32), and that for
Mach numbers greater then 1 by Vincenti and Wagoner (ref. 34), and experi-
mental data have been given by Liepmann and Bryson (refs. 30 and 31).
Sketch (e!) shows a plot of these results, all in terms of the reduced

Experiment ref. 30
—— e
_Lo
(o] 42
B 7—2"’
10°
. n o __E] ChE)
-l
-24 -20 -6 -1.2 -8 -4 o 4 .8 1.2 1.6 2.0
ﬁm
Sketch (e')

parsmeters Ty and §, and recast into the form consistent with the pre-
sent formulation of the basic eguations for transonic flow (see ref. 5,
6, or 9 for additional information on this point), together with the
results computed by use of the present theory. The new results are indi-
cated by the solid lines,the former by dashed lines and by data points.
The short vertical lines on the date points indicate Bryson's estlmate of
the experimental accuracy of the data. As can be seen, the only point of
difference between the present results and the previously existing results
is at Mach numbers slightly in excess of the upper critical, and results
Prom the error incurred in approximating the pressure jump through the
bow shock wave by simple wave theoxry (i.e., by eq. (15) rather than
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eq. (6)). The positive slope of the drag curve at £,=0, or Mach number 1
is in agreement with the result indicated by equation (51) and is typical
for airfoils that do not close at the rear.

Sketch (f!') shows & sumary of the comparable information for the
front half of a biconvex circular-arc airfoll followed by a straight

T T T 4
—— Theory j
o Experiment ref. 30 é
3 4
Y 6 ¢4
by T ~cTTS
’ T'/" : °
l

-24 -20 -6 -2 -8 -4 0 4 .8 1.2 6 20 24 28

Sketch (£1)

section, for which experimental data have been given by Bryson in refer-
ence 30. The theoretical values are again indicated by a solid line,

and the experimental values by data points.% Although the smount of
information available is much less than for the single-wedge airfoil, the
results for both cases show striking similarity.

Results for half airfoils are not typical of those for complete air-
folls, however, as can be seen by comparison of the preceding results
with the corresponding theoretical and experimental results illustrated

“The experimental values shown in sketch (f!) differ somewhat from
those given originslly in figure 21 of reference 30 because of the correc-
tion of some inaccuracies in the calculation of the drag from the experi-
mental pressure distributions given in figure 20 of reference 30. Although
no explanation is known for the substantisl negative drag indiceted at
suberitical Mach numbers and its existence must be indicative of some
shortcomings of the experimental technique, its occurrence is an unmis-
tekable consequence of the measured pressure distribution. That this is
s0 can be seen at a glance by comparison of the measured pressure distri-
bution with that indicated by linearized compressible flow theory, for
which the drag is zero.
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in sketch (g') for complete blconvex circular-arc airfoils. The experi-
mental results are those given by Michel, Marchaud, and Le Gallo in

° 1 1 ]
—Th eory oy \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“.
Experiment ref. 37 & o
T Lo o]
e .06
= .08 \\\\‘\\~\
& |0 S
M '.|2 o Extrapolated drag ref. 37 [
o 06
¥ .08
4 10
v I.12
.8 1.6 24 3.2 40

o
Sketch (g')

reference 37 and are obtalned by integration of equation (h8) together
wlth experimental values for the pressure distribution. The most promi-
nent difference concerns the slope of the curve of Eﬁ versus £

at E,=0, or Mach number 1, for which the same procedures that led to
positive velues for a helf sirfoll, lead to zero slope for a complete
airfoil. It can be seen that the experimental data support these values
of the sldope in both cases., Although the caleculated values for drag are
somewhat greater than those measured in the wind tumnel, most of the dis-
crepancy can be attributed to the local effetcts of shock-wave boundary-
layer interaction thet occur near the tralllng edge. Because this
phenomenon depends on Reynolds number and may be of greatly diminished
importance at full-scale conditions, Michel, Marchaud, and Le Gallo intro-
duced, in the discussion of thelr experimental results, the concept of
"extrapolated drag" to represent the drag that would occur in the absence
of separstion. This quantity is calculated by consideration of a pressure
distribution that differs from the experimental pressure distribution in
the vicinity of the tralling edge as a result of the replacement of the
pressures actually measured by those obtalned by extrapolation of the
trends indicated at statlons upstream of the separation point. Accord-
ingly, the values for "extrapolated drag" given by Michel, Merchaud, and
Le Gallo are also shown on sketch (g'). As might be expected, the theo-
retical values for drag are in better agreement with the values for
Yextrapolated drag" than with those obtained directly from the actual
measurements.

The results for biconvex circular-arc airfolls are typicel of those
for other complete airfoils. Attention is called, however, to the fact
that the experimentel values given by Michel, Marchaud, and Le Gello in
reference 39 for the airfoils that have the point of maximum thickness
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located forward of the midchord station are not so rellable as those they
give for alrfolls that have a more rearward location of the point of max-
imum thickness. This reduction in accuracy results from the facts that
the method of testing and the fixed spacing of the orifices tend to dimin-
ish the accuracy with which the contribution of the region near the lead-
ing edge can be evaluated, and that the contribution of this reglon is,

at the same time, of increased importance.

Sketch (h') shows a 6 |
sumary of the calculated . .
results for the pressure Airfolls defined by $0=0
drag of the two families — Eq. (56)
of airfoils described by N —— Eq.(61)
equations (56) and (61) NS

] /
with values for n rang- > T~ / /
2

ing from 1.5 to 6. For ——
this range of n +the air-
folls described by equa-~
tion (6l) have a range of [~~~ _L/ 7
location for the point of ~~n—— L

meximm thickness that = N\ / S~
extends from ebout 0.30 AN N 3
to 0.55 chord, and those N "~~~ _

described by equation (56) 3 < i 4 7
have a range of locatlons SN

extending from sbout 0.45 —l 7 ,/
to 0.70 chord. In eddi-
tion to lines for con-
stant &, which correspond
to lines of comstant Mach
number for & group of alr- . [ . . , |
foils having the same 1.5 2 3 4 5 6
thickness ratio, a line is 6 5 4 3,4 2 5
e e B %o
the lovest Mach number for Point of maximum thickness, k&l _

which the flow is purely

supersonic. It can be seen Sketch (h')

that the variation of pres-

sure drag with the location of the polnt of maximum thickness at Mach
number 1 is quite different from that indicated by lines of comstent §_,
or Mach number, for purely supersonic flows, but is rather similar to
thaet indicated by the llne for §°°cr' An Interesting feature of the
results for purely supersonic flow is that the drag is not the same in
forward and reverse flow, as is indicated by linearized compressible
flow theory (see ref. 43 or LlL).
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CONCIUDING REMARKS

It appears worthwhile, In conclusion, to summarize and contrast the
alternative discussions presented in the main text and in the Appendix of
the general procedures involved in the approximste solution of all the
problems treated in this paper. The arguments presented in the Appendix
are based essentially on the idea of diminishing the importance of the
higher order terms, and hence concentrate on the contributions stemming
from the double integral of the integral equation appropriate for each
case. The arguments presented in the mein text lead to the same conclu-
sions, but are based essentially on the ildea of linearizing the transonic
equation in a small region by replacing part of the nonlinear term by a
constant A, and then Introducing different values for A for different
points in the field. This procedure might be considered equivalent, in
some sense, to the replacement of the original nonlinesr equation by a
different linear differential equation for each point. Results obtained
by solution of the equations at this stage depend, of course, on the
choice of A and must be assembled in order to determine the final
results. This step is accomplished in each case by putting the results
into such a form that a first-order nonlinear ordinary differentlial equa-
tlon is obtalned upon substituting for A +the quantity it originally
replaced. At this point, the equations encountered colnecide with those
obtalned following the procedures described in the Appendix and the
remeinder of the snalysls proceeds in identical mesnnex. In the cases con-
sidered herein, the differential equation is always of sufficlently simple
form that it can be integrated analytically and the result expressed in
closed analytic form. This integration implicltly introduces the agsump-
tion of continuity of the velocity or pressure distribution and leads,
upon evaluation of a single constant of integration, to the final result.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronautlcs
Moffett Fleld, Calif., Mar. 11, 1957
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APPENDIX A
REINSPECTION AND ANAT.YSTS OF METHOD OF APPROXTMATION
INTRODUCTION

The methods used in the main text of this paper are appealing for
their brevity and for the efficiency with which approximste solutions of
the nonlinear equations of transonic flow theory are found. These methods
are not entirely satisfying to the critical reader, however, because cer-
tain elements appear to be arbitrary and there is no a priorl way in which
the accuracy of the approximations can be Judged. Both the virtue and
weakness of these procedures are the result of introducing the essentisl
s8lmplifications at the beginnirnig of the analysis. If the introduction of
approximations 1g deferred to the end, the relations that occur in the
initial stages of the analysis are, of course, more complicated than those
presented in the main text. Comslderation of these relations is, however,
essentlal for an understanding of the basis for the method of
approximation.

The following discussion of the approximate solution of problems of
transonic flow theory i1s based on comsideration of integral equations
derived from the differential equations of transonic flow theory by stand-
ard applicatlon of Green's theorem. Since the details of each of the
three cases, hyperbolic, elliptic, and parabolic, are somewhat different,
each case is considered separately. 1In each case, exact relations are
retained as long as possible and the spproximations, when Introduced, are
seen to be closely related to those employed in the method of successive
approximations commonly used in the determination of higher approximations
in compressible flow theory. The following paragraphs will be concerned
at the outset with the derivation of integral equations for each of the
three cases, and subsequently with the discussion of the simplification
and approximete solution of these equations.

DERIVATTION OF INTEGRAL EQUATIONS

All of the subsequent analysis proceeds fraom Green's theorem. There
are many forms of Green's theorem, but a sufficlently general form for
all of the present purposes is that associated with the linear opera-
tor L(Q) defined as follows (ref. 45, pp. 24h-247):

T(Q) = Ay + gz + BOx (A1)
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where A snd B are constants. Green's theorem states that the follow-
ing relation holds between any two arbltrary functions Q and ¥ having
contlinuous first and second derivatives:

ﬂ[ﬁ(n)-sﬁ(w] & - ﬂz (+2- 0 %)+ Bra con (a0 ]

R (A2)

z in which R refers to the interior of an arbi-
trary reglon bounded by the curve C, as shown
in sketch (1'), M is called the adjoint
differential operator

M(V) = By + Vypy - By

ol
ol

ds

x 4 represents the quantity

A= JKZcos(n,x) + cos2(n,z)

and o/dv stands for a derivative in the direc-
tlion v, and can be written as a linear
differential operator.
3Q '
Sketch (1') S, = cos(v,x) + Qzcos(v,z)

The direction v 1s called the conormal, and its direction cosines sre
related to those of the normal n according to

A cos(v,x) = & cos(n,x)

A cos(v,z) = cos(n,z)

Hyperbolic Case

The initial step in the present derivation of the integral equation
appropriate for the discussion of the hyperbolic case is to subtract
Mg®yy from both sldes of equation (3), and to write the resulting equa-
tion as follows:

NPk + Py = (Moo-leku-dg) @y, = fy (a3)

The symbol ANy refers to any positive finite constent. The form of
Green's theorem sssoclated with the linear operator

(9) =Ig(9) = -MgPyy + Py (Ak)
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will now be applied, whence
E=-\g, B=0, ¥le) =Trle) (45)

The quantity Q 1s now identified with the perturbation potential o,
and ¥ with an elementary solution of Mg(¥)=0, in particular with the
unit supersonic source og defined as follows:

- — for (x-£)%2ng(z-f)® (Abe)
N

0 for (x-£)%<ng(z-¢)® (A6b)

If the region R 1is so selected that the inequality expressed in equa-
tion (A6a) holds throughout, equation (A2) reduces to

- o7 - -— -
- | Rgs=—as = Ig(p)dR = FrdR (A7)
“/é e “g R

in which Zﬁ and Vg refer to the speclal forms of A snd v consistent
with equation (A4) or (A5), the running coordinates of integration

are §,[, and the field point &t which ¢ 1s to be evaluated is x,z.
Equstion (A7) is now applied to the reglon indicated in sketch (3.
Note that the wing, wake, and shock waves must
be excluded from the region of Integration.

It should be noted that sketch (Jj!) is only a ,
schematic illustration to help define the /
gquantities involved in equation (A7), and that /
the shock wave, indicated as a detached bow
wvave, might instead be attached to the leading
edge, to the trailing edge, or situated some-
where along the chord. The single shock wave
illustrated in sketch (J') could, moreover, be
replaced by & complicated system of shock
waves. The region Rp may likewise be con- N\ Ry /)
sidered to comsist of a single region, or as N
the sum of a number of regions as typified by
adding to Ry the region situated upstream of
the bow wave and within the dotted lines of Sketeh (J*)
sketch (j'). In any case, the general considerations remain the same,
and the following Integrel equation 1s obtained for ¢ at an srbitrary
point x,z:

i

———

—
o
-
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(x,2) = |-
q) b4 EJ-;\E o 2
1 = . 3P .= 1 I/‘ =
S =—a - i (AB)
2'\[7\_3 §H Ay BVH Sg > r—)\H J HORE
RE
where
39 9%, o%
Ao— = — = — AP = -
X Tx x0T

in wvhich u and 7 refer to conditions on the upper and lower sides of
the wing and wake, where

5 0P Py, . OB,
a'VH - BVH BVH

in whisp a and b refer to conditions on the two sides of the shock
wave Sp, and where

y - I L el
Ag S M Y cos(n,x) + Y cos(n,z)

Elliptic Case

The integral equation appropriate for the discussion of the elliptic
case can be derived by use of procedures analogous to those described in
the preceding paragraph for the hyperbolic case. The initial step is to
add ApPxyx to both sides of eguation (3), and to write the resulting
equation as follows:

NPy + Ppy = [RE-(l-Mmz-ku):l Py = TE (49)

As in the hyperbolic case, the symbol A refers to any positive finite
constant. The form of Green!s theorem associated with the linear opersator
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L(9) = Ig(0) = MgP + P, (410)

will now be applied, whence
i= M > B=0, —ME((P) = T-']ig(c!)) (a11)

The quentity 0 is now ldentified with ¢, end ¥ with an elementary
solution of ME(¢)=O in particular the unit subsonic source defined by
the function

i f (x-£)50g(z-t)* (a12)

“‘”’E'e,tf

In this way equation (A2) reduces to

- a aUE — — —_
_4 Ig (o gq:; - 55) ds =ﬂ ol (@) &R =ﬂ opfydR (A13)
R :

R

in which Az and vy Trefer to the spe-
cial forms of A &nd v consistent with
equation (A10) or (All), the running
coordinates of integration are §,§,
and the field point at which ¢ 1s to
be determined is x,z. If equa-

tion (A13) is now applied to the

region Rg surrounding the wing, wake,
and shock waves, as 1llustratéd in
sketch (k'), and the a priori assump-
tion is made that the perturbation
field attenuates sufficiently fast with
distence to negate the contribution of
the surface integral over the large
circle in the 1limit as the radius goes
to infinity, the following integral Sketch (k')
equation is obtained for ¢ at an

arbitrary point x,z

o(x,2) =-f <UEA 3 ag ) §+£ GEAES dgE +f ogfEdRE
Rg

(A1k)

where A9 and A(dP/3f) have the same meaning as in equation (A8), but
where
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0P 3Py O,

8 = +
ovg Ovg Ovg

in whigh a and b refer to conditions on the two sides of the shock
wave Sp, and where

£ 30, 0 20
Ap S;E = Mg 5 cos(n,x) + Y cos(n,z)

Parabolic Case

The initial step in the derivation of the integral equations eppro-
rriate for the discussion of the parasbolic case is to subtract ApPy
from both sides of equation (3), end to write the resulting equation as
follows:

P Mp?y = ME-1)o_+(ko _-Npo, = fp (A15)

The symbol refers again to a finlte constant, vwhich may be either
positive or negative. The form of Green's theorem associated with the

lineayr operator

L(e) = Ip(e) = 9,,-M, (416)
will now be applied, whence '
K =0 ’ § = '7\]? ) EP((P) = CPZZ + 7\Pcpx (A17)

The quantity _Q is agein ldentified with ¢, and ¥ with an elementary
solution of Mp(¥)=0, in particular with the function

-
T =S I
¥ = op = lht(x:-Pé) o D g = 2 © (A182)
0 for ;7\13_ <o (418b)
.

This function assumes & role In the analysis of the parabolilc case that
is analogous to that of the unit subsonic and supersonic sources in the
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elliptic and hyperbolic cases. Tn mathematical literature, the linear
partial differential equation Lp(@)=0 with positive Ap arises in the
study of heat conduction, and the function op 1is often referred to as
& unit heat source. If the reglon R 1s so selected that the Ineguality
expressed in equation (Al8a) holds throughout, equation (A2) reduces to

-1: [KP (GP S:JP - ;E;) ~MpopP cos(n,x) :| ds =~0ﬁ0'PfP(cp)dE =ﬁ°PfPﬁ
c

R R -
(A19)
in which AP refer to the special forms of A snd v consistent
with equation (AJ.E%) or (AlT), the running coordinates of integration

are ¢&,f, and the field point at which ® 1is %o be determined is x,z.
It is a.ppa.rent from the condition imposed on Rp, that Ap/(x-t) is

greater than or equal to zero, that two distinct subcases result depending
on the sign of Ap.

Positive Np.- If Ap 1s positive, the

————T
region Rp appropriate for the application of el
equation (Al9) is that part of space upstream yd z
from the point x,z. Agaln the wing, wake, 7 R

and shock must be excluded from the region of /
integration, as illustrated schematically in

e g — —— = ———
>
N

!
)
sketch (1'). If equation (Al19) i1s now applied 1 Yo 5l %
to the region Rp, and it is assumed that the \ i
perturbation field attenuates sufficiently ‘\\ Sp |
fast with distance to negate the contrlibution 5\ -
of the surface integrel over the outer bound- . PN
ary in the 1limit as the radius is increased Y }
to infinity, the following integral equation TS~ i
is obtained for ¢ et an arbitrary point x,z: = TTTT- -
Sketch (1')
o(x,z)= l: <GPA ag )dg UPA?S BVP> dSp - If opfpdRp
(A20)

where AQ and A(J9/3t) have the same meaning as in equation (A8), but
where

d 3
8BCP =q)a+q)b

BvP B'VP BvP
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in which & and b refer to conditions on the two sides of the shock
wave Sp, and vhere

A é_cp_ = o9 cos(
avP = a Il,Z)

o= ———— Negative ANp.- If Ap 1s negative,

N
/
7/

the region §P appropriate for the appli-

Rp N cation of equation (A19) is that part of

Y space downstream from the polnt x,z. If

equation (ALl9) is applied to the region Rp
- P __\ x surrounding the appropriate part of the

Sp ] wing, wake, and shock waves, as i1llustrated

! in sketch (m'), and the contribution of the

/ surface integral over the outer boundary

/-CP // vanlshes as the radius is increased to

s infinity, the following integral equation

— is obtained for ¢ at an arbitrary

point x,2z

S

Sketch (m!)

o(x,2) ——f <PA—-A¢BGP>d§+—f o‘PAP (B )dﬁ:+—ﬂ%

(A21)

where the symbols have the same meening as in egustion (A20) » except
that SP and RP now refer to those portions of the shock waves and space
sltuated downstream from x,z

SOME PROPERTIES OF THE INTEGRAL EQUATIONS

Although the four Integral equations derived in the preceding para-
graphs and written explicitly in equations (A8), (AlLk), (A20), and (A21)
are quite different in most respects, they do possess & number of prop-
erties 1ln common that are of concern in the present discussion. Perhaps
the most obvious similarity is that each integral equatlion consists of a
term that involves integration over the wing and wake, another term that
involves integration over the shock waves, and a third term that involves
integration over the surrounding space. The integrals extend over all
space in the elliptic case, but only over part of space in the parabolic
and hyperbolic cases. It is important to realize that there is no direct
connection between the region of integration in each of the integral equa-
tions and the region of dependence in the solution, or in the physical
flow, and that these two reglons may, in fact, be distinctly d.ifferent
in some applications.
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The first term in each integral equation involves a distribution of
sources ¢ proportional to A(JQ/df) and doublets Jdo/df proportional
to AP. Since A(JP/df) 1is equal, according to the boundary condition
given in equation (1), to UA(dZ/dx) and AP is proporticnal to an
x-wise integration of the 1lift, it follows that the part of the term con-
taining sources is associated with the thickness distribution, and that
part contalning doublets, with the effects of camber and angle of attack.
The latter part of the first term 1s zero for all of the nonlifting alr-
folls discussed in the main text of this paper. The first term in the
elliptic and hyperbolic cases is familiar in compressible flow theory
because, upon equeting Ag to 1-M,2 or Aag to M 2-1, it reduces to the
well-known solution for ¢ 1n the linearized theory of subsonic and
supersonic flow around thin airfoils.

The second term in each integral equation involves a distribution of
sources o proportional to AS(dP/dv) over any part of the shock waves
that is situated in what otherwise would be part of the region of inte-
gration R. There is no doublet distribution on the shock wave, as on
the wing and wake, because ¢ 1is continuous across the shock wave.
Although the contributlon of the integral over the shock waves is often
difficult to evaluate because &(3P/dv) is unknown and must be determined
as part of the solution, there are & number of important applications in
which this term either vanishes completely, or contributes nothing to the
values for ¢ along the chord of the airfoll. The simplest class of
problems for which this term vanishes is, of course, that in which the
flow is subsonic everywhere snd is hence shock-free. The contribution of
this term will also vanish in parts of the field even if shock waves are
present, provided they are situated entirely downstream of the region of
integration in the hyperbolic case or the parabolic case with posi-
tive KP, or entirely upstream of the region of integration in the para-
bolic case with negative Ap. The contributions of the shock wave vanish
in the above situations because the complete term disappears from the
integral equation. If the term remains, however, each element of the
shock wave provides a contribution to ¢ that depends upon its strength
and orientation. There are, moreover, certain directions in which an
element of a shock wave can be orilented that result in no contribution
to ¢ 1n the parebolic and hyperbolic cases. Thus, in the parsbolic
case, the contribution vanishes when the element of the shock wave extends
perpendicular to the x axls, so that cos(n,z) in the second term of
equation (A20) or (A21) is zero. It 1s similarly evident from equa-
tion (A8) that an element of a shock wave contributes nothing to ¢ in
the hyperbolic case if the direction cosines and velocity components on
the two sides of the shock wave satisfy the relationship

cos(ny,z Ug -
cos(ny,x) W =Wy
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This relation can be expressed completely in geometric terms by combining
it with the following equation that can be derived from consideratlion of
the fact that ¢ 1s continuous across the shock

cos(ny,z)  wg-wp

= (423)
cos(ny,x) Ug-up

Thus, the contribution to ¢ veanishes if the element of the shock wave
is oriented so that

cos(ny,z)
— = tan® =
e an®(ny,X) = Mg (a2k)

If the same line of reasoning i1s applied to the elliptic case, relations
analogous to equations (A22) through (A24) occur in which Ay is replaced
by -xE. From such considerations it would appear that the contribution
to ¢ vanishes if the element of the shock wave is orlented so that

2
cos(ny,,2)
cos(ny,,x) = (425)

Since Mg 1s required to be a positive guantity, however, it 1s clear
thet there is no orientation for which the contribution vanishes. In the
hyperbolic case, on the other hemnd, ANg 15 requlred to be positive and
there are always two particuler orientations for which en element of a
shock wave contributes nothing to @. It is interesting to note, before
leaving the discussion of the second term of each of the integral equa-
tions, that the particular orientation for which an element of a shock
wave provides no contribution to ¢ colncides in all three cases, ellip-
tic, parebolic, and hyperbolic, with the directions of the cheracteristic
lines of the assoclated form of the linear partial differential equation,
L(p)=0. The reader should observe, however, that these characteristic
lines have no particular physical significence, inasmuch as their exlst-
ence and dlrection depend on an arbitrary choice of & value for A.

The third term in each integral equation involves integration of the
effects of a distribution of sources ¢ proportional to £ over that
part of space su;rounding the alrfoll that 1s enclosed within the region
of integration R. The contribution of this term does not vanish, except
in slmost trivial circumstances such as occur, for example, in the hyper-
bolic case for points upstream of a bow wave provided Ny 1s equated
to M@Z-l so that fg 1s zero. Discussion of the contribution of the
third term in each integral equation will consequently constitute the
subject of much of the remainder of this Appendix. An Interesting
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property of each of the Integral equations that is worth noting before
proceeding to the more speclfic discussion of each case is that the inte-
grated strength of the sources in all space exterior to the airfoll,
including those distributed along the shock waves, is equal, but opposite
in sign, to the integrated strength of the sources distributed along the
entire chord of the airfoil.

SIMPLTFICATION AND APPROXTMATE SOLUTION OF
THE INTEGRAL EQUATIONS

No general methods are known for the analytical solution of the
integral equations given in equations (A8), (Alhk), (A20), and (A21).
Although certain simplifications can be made by restricting attention to
nonlifting cases, and to cases in which the shock waves are not in the
region of dependence, the essential difficulties remain because the inte-
gral equations are nomnlinear, just as is the differential equation from
which they are derived. The principal method that hes been employed in
the past for the solution of similar problems is that of successive
gpproximation in which ¢ 1s expanded in a power series of some param-
eter such as the thickness ratio, and the coefficients in this series are
determined as the solution develops. The first approximation in these
methods is generally either the solution for linearized compressible flow
theory or for incompressible flow, and the second and higher approxima-
tiones are determined by iteration procedures in which linear equations
are solved at every step. In practice, these methods have been found very
difficult to apply to problems of compressible flow, and calculations of )
higher approximations than the second have, in most cases, proved prohib-
itively lengthy. (See ref. 3 for a resumé.) Serious questions of con-
vergence remain in the existing solutions of this type, and it is doubtful
1f the results apply when mixed subsonic-supersonic flow occurs.

Another type of successive gpproximation procedure which involves
the solution of quadratic equations with every lteration step 1s des-
cribed In reference 9 and spplied to the calculation of pressure distri-
butions on eircular-arc airfoils for all Mach numbers up to unity.
Although the calculations could only be accomplished after the introduc-
tion of certaln approximations, whose Influence on the result is difficult
to ascertain, the general procedure appears to succeed even with the
occurrence of mixed flow.

The methods applied in the main text of this paper can be considered
as the first step of stlll another type of successive approximation pro-
cefdure in which certaln nonlinear features are incorporated into even the
first spproximation. This procedure possesses the advantage of ylelding
results that disclose much of the nonlinesar effects in the first approxi.
mation, and of making umnecessary, in many applications, the difficult
tasgk of iteration to determine higher spproximations. A simple heuristic
description of the analysis is given in the main text. The following
paragraphs are concerned with a more detailed examination of the
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spproximations involved in the analysis, and of the relationship between
the present approximation and the approximstions previously employed in
the solution of problems of compressible flow. Although it is apparent
that much of the diescussion could be applied to lifting airfoils, atten-
tion is confined, as in the maln text, to symmetrical nonlifting alrfolls
for which the followlng relations are to be applied in the flrst term of
each integral equation:

= oy, & (426)

=0
AP , A r

XY

Hyperbolic Case

The first problem to be discussed is the approximate solution of the
integral equation given in equation (A8) for the hyperbolic case under
the restrictions that the flow 1s purely supersonic so that

Moo= -1+4ku> 0 (A27)

Equation (A8) contains both a line integral over the shock wave Eﬁ and
8 double integral over the surrounding region Rpg. The double integral
can be integrated x-wise, however, because the integrand is a perfect
differential. This partial integration resulis in a term that exactly
cancels the line integral on the shock wave and equation (A8) can be
rewritten as follows:

U JFX-JKEIZ|dZ

)2) = - = 92 g¢ - L 21 B a
AR~ R L s H>(i28)

The symbol > %below the integral sign of the second term indicates that
the integration 1s to be carried over the lines g:x-d”ﬂﬁ(lz-gl) extending
upstream from x,z. Differentiation yields the following relations

for u and du/ox:

u(x,z) = - :%§§ z <.-MEE;[Z{)

m Bx f <Mm -l+— "7\H> at

(A29)

3%
L oo f u<Mw2—l+k—2u -7\E> at

(A30)

du(x,z) __ U gn 'J——IZ|
ox VFXE * )
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Tt should be noted that equations (428), (A29), and (A30) are all integral
equations and that each is an exact relation valid for any positive value
of RH'

The results of linearized supersonic flow theory, as well as those
of the counterpart, in the small disturbance theory of tramsonlic flow, of
higher approximstions can be reproduced from any of the above equations
upon equating Ag to M@ -1. In this way, all contributions of first order
are included in the first term on the right and the contribution of the
second term on the right is, at most, of second order. Thus, the familiar
expression of linearized supersonic flow theory follows lmmediately upon
disregarding the contribution of the second term

uwx,z) = = —-—Eﬁi—— ! - 2.1z uw
(x,2) mZ( N TN l>+0(2) (A31)

Its counterpart, correct to second order in 2Z', can be determined by
application of the method of successive approximations in which the con-
tribution of the second term is epproximated by replacing the unknown u
by the first-order spproximation provided by equation (A31) and integrat-
ing. In this way, the following result is obtained for points on the
airfoil.

w0 - gl g (8) 0 (8) v

Note that although the first- and second-order approximations for u are
different in general, first-order theory is sufficient to determine %o
second-order accuracy the point where u vanishes, that is where d%Z/dx=0.
First-order theory, moreover, provides the exact location for the point of
zero u in the absence of shock waves, but this simple result is true
only to second order if there are shock waves situated within the Mach
forecone of the point (x,0). Although the difficulties of integration

are such that only the first few steps of the method of successive approx-
imation can be evaluated in all but the simplest examples, the method can,
in principle at least, be repecated indefinitely to establish the result
accurate to any desired order. The result for u on the airfoil surface
appears in the form of a power series involving ascending powers of

(dZ/dx)/(Mwa-l)S/E. It is clear that & valid approximation is obtained

provided the absolute value of dZ/dx 1is sufficiently small at all
points, and the Mach number is not too close to unity. The fallure
assoclated with excessive positive values for dZ/dx usually occurs near
the leading edge of the airfoil and is associated physically with detach-
ment of the bow wave and the occurrence of local regions of subsonic flow.
The failure associated with excessive negative values for dZ/dx, and
clearly illustrated in sketch (c) of the main text, usually occurs near
the tralling edge of the airfoil and is purely mathemetical In origin.
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In actual practice where only the first term or two may be evaluated, the
result fails to provide adequate information regarding the ultimate con-
vergence oxr divergence of the series and the question must be settled in
each application by appeal to more exact solutions. It is important to
realize that these uncertainties are not imherent in the integral equa-
tions given in equations (A28) through (A30), but enter the analysis wilth
the assumption that the solution can be spproximated satisfactorlly by
application of the particular form of the method of successive
gpproximation descrihbed above.

The method of analysis employed throughout the main text is equiva-
lent, from the present point of view, to the first step of a slightly
different method of successive gpproximation that proceeds from consider-
ation of the infinite set of relations that result if different values are
selected for Ag in the determination of conditions at different points
in space. Analyses based on such a system of equations are more complex,
in general, then those based on a single equation, but this increase in
complexity is counterbalanced, in the present applications, by the fact
that approximations cen be introduced on the basls of local, rather than
global, consideretions. This fact mekes possible the incorporation of
some of the higher order or nonlinear contributions, as well as all of
the first-order contributions, into the first term on the right In each
relation 6f the infinite set, thereby reducing the contribution of the
term conteining the unkmown u(g,f). If a rule for the selection of Ag
can be found that achleves this effect and if it can be expressed in ana-
lytic form, the infinite set of relations can be expressed once agein in
the form of & single equation; and the remainder of the analysls can pro-
ceed in a menner ansalogous to that described im the preceding paragraph
for the classlcal method of successlve approximation.

The method employed in the analysis of the hyperbolic case in the
main text of this paper 1s equivelent to the first step of a successive
approximation procedure based on the infinite set of equations for Ju/dx
tygified by equation (A30) with Ag equated to the local value of
Myo=-1l+ku(x,z) in each relation. Although it would appear from cursory
examination of equation (A30) that the error incurred in so doing would
be of second order, it will be demonstrated below that the result is
actually accurete to second order and that the error is, &t most, of third
order. Although equations (A29) and (A30), upon which the remainder of
the discussion of the hyperbolic cese 1s based, are exact within the
approximations of transonic flow theory, they are not in the most advan-
tageous form for the following discussion because of the presence of the
integral in the second term of each relstion. If, however, attentlon 1s
confined to the evaluation of the result at the airfoil surface to second-
order accuracy, and to cases for which Ag 1s restricted to values that
differ from Me2-1 by, at most, a quantity proportional to u(x,z), that
is Ag=M >2-l+au(x,z), the integrals cen be integrated and the following
relations result:
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u <M°°2-l+ % -7\H>

Ueo

= - e— ._..iZ - 3
u(x,0) = __7\E P o (4 2-1) + 0(u®) (433)
du(x,0) _ _ Up a3z _ Ux(Muo®-Ltku-Ag)
x - g 4x2 2(M2-1) + o) (a5h)

It is now clear that the substitution of M 2-1ltku for Ag in equa-
tion (A34) ylelds

du(x,0) _ Uep a2z

o i

+ 0(u®) (A35)

This result corresponds to eguation (11) of the main text and leads » upon
integration and insertion of the auxiliary relation that wu vanishes
where dZ/dx is zero, to equation (15) relating (‘,f and dZ/dx. This
relationship is commonly designated as thet of simple wave theory. From
the sbove discussion, it is clear that equation (15) must be correct to
at least second order, as Indeed simple wave theory is known to be for
the pressures on the surface of an alrfoil. If there are no shock waves
in the region influencing conditions &t the point (x,0), the flow field
is characterized by a single family of waves; and it can be shown that
the error term indicated in equation (A35) veanishes completely. The
resulting relation 1s thus exact within the approximation of transonic
flow theory. It is interesting to observe that the use of the same
relation for Ag in equation (A29) for u leads to

M=o Do A2, ku® e (436)

+
'JMooz-l+ku ax 4(1\4002_]_)

and results in errors of second order if only the first term is used.

There is another choice for Ay that is not mentioned in the main
text that will remove the second-order error if only the first term of
equation (A29) or (A33) for u 1is used and that is Ag=M,~-1+(ku/2),
since then '
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u=- -———-—-—-——-'%§'+_O(u?) (A37)

This result 1s not the same as that of simple wave theory, but is
recognized upon rearranging so that

u [M2-1 +;]‘25 = Uy % (A38)

as belng the square root, with appropriate cholce of sign, of the shock
relation given in equation (6) with ug and wg equated to zero. The
result obtained by use of equation (A38) is thus equivalent to that
obtained by equating the pressure at each point of the airfoil surface

to that on a tangent wedge. Such & procedure has been proposed previously
and is sometimes called “tangent-wedge theory." Although the first two
terms of the formal expansion of either equation (A38) of tangent-wedge
theory or equation (14) of simple wave theory agree with the second-order
result obtained by use of the method of successlive gpproximations and
given in equation (A32), the results of elther simple wave theory or
tangent-wedge theory are to be preferred in applications because they
approximate the proper termination of the solution when dZ/dx becomes
too large, and do not fall spuriously at larger negative values of dZ/ax.

Elliptic Case

The second problem to be discussed is the spproximate solution of
the integral equation glven in equation (Alk) under the restriction that
the flow is purely subsonic so that

1-M2-ku> 0 (439)
This restriction implies that the integral over §E is zero, since there

are no shock waves in & purely subsonic flow. Thus, equation (AlY) reduces
to

(o4 _+w
o =0

Differentiation ylelds the following relations for u and du/dx
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(x,2) * dog az T e Basa (i)
,2) = 2Uyp — =24 frp — a Ah3
uix,2 L/;axdgg‘”ﬂ E5e &%
du(x,z) ¢ BZGE az " aao'E
S = Uy jc: SE Edag + :0[]‘ fp —— 4& at (Ak2)
where .
1 2 2
op = —2— 1n 4 (x-£)% + Ag(z-t)
N
BO'E _ l x_g
ox 2x,JiE [(x-§)2+XE(z-§)2}
3%y 1 (x-£)®ag(e-)®

o 2xﬂ[(x_§)2+7\E(z_c)2]2

fg = xE-[l-MmZ-ku(e,C)1 %;—

Equations (A4O), (Akl), and (AL2) are all integral equations and each is
exact for any positive value for Ag- The solution of any of these inte-
gral equations is complicated not only because the relations are non-
linear, but also because the kernel, designated by og Or its derivative,
is infinite at the point E=x, {=2.

The femilier result of linearized subsonic flow theory can be
obtained from any of the above equations by replacing Ag by 1-M 2 and
disregarding the contribution of the double integrasl as belng of higher
order. The corresponding result, correct to second order, can be
obtained by application of the method of successive approximations in
which the contribution of the double integral is approximated by means
of' the first-order result to evaluate fg at each point. Higher approx-
imations can be obtained, at least in principle, by repeated application
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of the same procedure, except that £y 1s evaluated at each step by use
of the results of the next lower spproximation. In this way, an approxi-
mate expression foxr._the solution is determined in the form of a truncated
power series. Although the difficulties of integration are s0 great that
few cases have been evaluated beyond the second approximation, it appears
that the process converges to the desired solution for thin airfoils pro-
vided that certain well-known difficulties assoclated with stagnation
points are properly accounted for and that, as in the hyperbolic case,
the Mach number is hot too close to unity. Again the results provided by
the method of successive approximation indicate no definite limit for the
Mach number. Comparison with experimental results shows that the trends
dlsplayed by the results are generally confirmed for Mach numbers less
than the critical Mach number, but are essentlally refuted for greater
Mech numbers.

It is dnteresting and Informative to compare the results obtained in
the manner described above with those obtalned by application of an alter-
native version of the method of successive approximations described in
reference 9 that involves the solution of quadretic rather than linear
algebralc equations at each step of the lteration process. The equation
fundamental to this discussion is obtained from equation (A41l) by again
equating Ap to l-M&z and Integrating the double integral by parts. In
this way the following integral equation is determined for u:

400 2
¢ da 2(g,t) O o
k u2 E 4z u 2 E
- — = UDO — e, QE -k d a
" o z fo dx dg : \[f 2 ox2 £ ag (ak3)

Although equation (Ah43) 1s completely equivelent to equation (Akl), it
is, in certain respects, superior from the point of view of obtaining
approximate solutions. This is because the predominant effects of the
region near the point x,z, which form a major contribution to the value
of the integral in equation (Akl), are furnished in equation (A4L3), by
the term involving the square of u standing outside the integral.
Although the difficultles of integration are as great or greater than
encountered in the classical method of successive approximations and only
the first few steps can be evaluated without spproximation in eny specific
application, certain general features of the solution are clearly defined.
In particuler, it is shown in the report version of reference 9 that the
results obtalned for flows that are subsonic everywhere converge, in the
limit of en infinite number of lteration steps, to the same result as
ultimately obtained Ty application of the classical method of successive
spproximation. Whereas there is considerable doubt about the precise
range of convergence of the latter result, the result obtained by appli-
cation of the quadratic method of successive approximation clearly termi-
nates with the occurrence of sonic veloclty somewhere in the flow. The
termination of the solution 1s recognized by the disappearance of real
roots of the quadratic equation and is apparent at every step of the

iteration process. It is evident, moreover, from comparison of the two
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sets of results that the series expasnsion for the solution obtained by
the classical method of successlve approximation converges only for purely
subsonic flows and that the results indicated for mixed or transonic flows
ere false. These properties of the result obtained by the quadratic
method of successive gpproximstion are conslstent with the numerous argu-
ments and proofs for the nearly nonexistence of continuous shock-free
transonic flows t]ga.t have been advanced in recent years. (See ref. 46
for a brief resume.)

This difference in behavior can be readily illustrated if one con-
siders the expressions for the pressure coefficient at the midpoint of &
symmetrical clircular-arc airfoil that are obtained following the comple-
tion of the first two steps of each lteration process. The result pro-
vided by use of the classical method can be readily obtained from the
third-order result quoted in equation (37) of the main text and is

2
CP=_§ T 2-(_}‘:%_; %TE.FO(TS) (ALIJ.[.)
=M

SN Y 2/ (1-M2)2

The first term represents the result obtained if one considers equa-

tion (Al41) and disregards completely the contribution of the .double inte-
gral. The result is precisely that of linesrized compressible flow theory
for the particular point under discussion. The second term represents an
approximation for the contribution of the double integral obtained by
replecing fp for each point in space with the result provided by line-
arized theory. The results obtained by application of equation (Alkk)
Indicate that - increases indefinitely with increasing value of

T/ (1—M°°2)3/ 2 and appear to apply for mixed, or transonic, flows as well
es for purely subsonic flows. The corresponding results obtained by use
of the quadratic method of successive gpproximation are found by consid-
eration of equation (AlL3) . A first spproximstion obtained by dlsregarding
completely the contribution of the double integral is

_ 2(1-M3) 8 Mo(y+1)
CP = - m l—ﬁ- E W T+O(T2) (A.ll-s)

and s second gpproximation obtained from the evaluation of the contribu-
tion of the double integrel by use of the result provided by linearized
theory for fp at each point is '
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¢, - 20 l_jl-gmﬂ 6, 1\ %t® o e

M,2(7+1) T (114,222 \® 2 /) (11.)°
(AL6)

The results obtained by epplication of elther equation (A45) or (ALE) also
indicate that -Cp increases with increasing values of T/(l-M@a)s/z,

but that this trend terminates when QR reaches the critical value asso-
clated with the occurrence of sonic veloeclty, that is, when

__2(1-M7)
% = Moot (7+1) “Per ©)

At this point, the slope of & curve representing the variation of C.

with M, 1s infinite. 1In spite of these distinet differences in behavior,
it is important to note that a formsl power series expansion of equa-

tion (A46E) in terms of T agrees to second order with equation (Akk),

and that this agreement increases by one order of T upon the completion
of each additional iteration step. Results obtained following completion
of additional ilteration steps continue to follow the same trends., Those
indicated by the classical method never provide any information regerding
the precise range of convergence, and those Indlcated by the quadratic
method always terminate wlth the occurrence of sonic velocity.

The method employed in the main text can be considered as an alter-
native procedure devised in an attempt to improve the quality of the first
epproximation and to diminish thereby some of the necessity for the eval-
uation of higher approximations. Before proceeding, 1t is lmportent to
recall that equations (AL4O), (A4l), and (AL2) are all integral equations
valld for any positive value for AR; and that each can be considered, in
the same way as described for the hyperbolic case, as a typical member of
an infinite set of reletions that result if different values are selected
for Ag In the determination of conditions at different points in space.
It appears plausible that an increase in the accuracy, although not the
mathematical order, of the first approximation might occur if Agp 1is
equated not to simply 1-M 2, but to 1-M,2-ku(x,z) because then the
function £ in the double integral of each integral equation reduces
to k[u(x,z?-u(g,g)](au/ag) and hence vanishes at the point E=x, {=z
where op, O0g/Ox, or d%cy/dx® are infinite. If this procedure is
applied to equation (A4O) or (A%l) for ¢ or u, and only the contribution
of the single integral is retained, it is clear that the desired improve-
ment will not be obtained for all Mach numbers up to the critical because
the function JIFMW?—ku that appears in the denominstor of each term
vanishes with the occurrence of somnic velocity, and the numerator does
not venlsh simultaneously. It is interesting to note, nevertheless, that
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the result for the pressure coefficient on the airfoil surface that 1s
obtained in this way from equation (A1), that is,

cPi(x’O) _ CPi (xJO)

CP(X,O) = (A)'I"?)
> Ky J1,M? :
1-M,"+ > Cp
corresponds to the use of the local, -0 :
rather then free-stream, Mach number \‘\
in the Prandtl-Glauert rule; and that \ Cor. Eq(5)
this result is the counterpart, in - e : /e EG
transonic small disturbance theory, Circular-are 7=10 \
of an approximation proposed by \
Laitone, Szebehely, and Truitt -8 Eq.(A4T) 5
(vefs. 47 through 51). It is ime- o TN M
diately apparent that although this Eq.'(ze)- / //)(‘
result differs from the Prandtl- 4 7
Glauert rule in the seme direction P \
es the higher order approximations, —
the effects of compressibllity are -2 }
greatly overestimated at poilnts where - :*nd“ﬁe' Eq.37) \
the local velocity approaches sonic 3rd " ”
velocity. A typical set of results 05 > y E— - 10
illustreting this statement is shown Mo
in sketch (n') in which are repeated Sketch (')

the curves of sketch (h) showing the

veriation of Gy with M, et the midpoint of a 10-percent-thick circular-
arc alrfoll together with the corresponding curve calculated by use of
equation (ALT).

The relations developed in the discussion of the elliptic case in
the main text do not encounter any such difficulties as the local Mach
number approaches unity. The difference in behavior is a consequence of
the fact that the latter results are based on the equation for du/ox
rather then that for @ or u. That such a difference might occur can be
seen by exemination of equation (A42). The denominator of each term again
approaches zero as the local Mach number approaches 1, but the numerator
of each term is always zero at the point of meximum velocity. Since sonic
velocity is firest encountered with increasing Mach number at the point of
maximum velocity, it is apparent that an indeterminate form occurs at the
critical Mach number and the possibility at least exists that the gain
sought by forcing fp to be zero at the point where BZGE/BXZ is infi-
nite will be realized. That a gain in accuracy, although not the mathe-
matical order, of the solution is actually attained by thls procedure is
shown in the main text by comparison with existing higher approximstions.
Further confirmation of this comclusion is shown by the comparison -
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BT T T — 11lustrated in sketch (o') in which the
| \('cPer B curves of sketch (h) showing the vari-
Circular-are =IO l\ ation with M, of Cp at the midpoint
6 q (A48l 3 - of a l0-percent-thick circular-arc alr-
Co Eq(A45)~, 'l foil are repested together with the
Eq.(ée)-\l / /5( curves calculated by use of equa-
4 i ///'\ tions (A45) and (Ak6) representing the
== first two approximations furnished by
the quadratic method of successive
-2 o order approximations.
2nd : Eq.(37)
c r L L i i M
(o} 2 4 Mg B 8 10
Sketch (o)

Parabolic Case

The third problem to be discussed 1s the approximate solution of the
integral equations for the parabolic case under the restriction that the
free-stream Mach number is near unity. Two integral equations are given
depending on whethexr Ap 1is posltive or negastive. Inasmuch as no use 1s
made in the main text of the equation for negative Ap, the following
remarks will be confined to the case for positive Np, for which the
integral equation is given by equation (A20):

= [ e -k [ aos
KeZ) = = c—— On —= d - om— opfpdBp -

ﬁb
3 o9
%1; [ op S%-f cos(ny,,2)ds (a48)

Sp

Wwhere

] ?\P(Z'_Q)z:l

o = /_"P_ [ +(x-¢)
P br(x-t)
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The third term of equation (AL8) represents the comtribution of
sources distributed along the surface of any part of the shock system
that is situsted upstream of the point x,z. This term has the property
of effectively continuing the source distribution of the first temm
smoothly through a concave corner vwhen the adjacent flow is supersonie.
In this way, the singularities in the velocity and pressure that occur
st such corners when the sdjacent flow is subsonic are replaced, when the
adjacent flow is supersonic, by the discontinuous, but finite, Jjump esso-
clated with an oblique shock wave. The contribution of this term wvanishes
if no part of the shock system is situated upstream of x,z or if the
shock wave is parallel to the z axis. In that which follows attention
is confined to cases in which it is presumed that one or both of these
conditions are satisfied for all points situated upstream of the trailing
edge. The integral over the shock waves thus contributes nothing to o
at any point on the airfoll surface, and the remsinder of the discussion
will proceed with considerations involving only the first two terms of
equation (A4B), end with the corresponding equation for u obtained
therefrom by differentiation with respect to x. These two equations
reduce to the following forms for points on the airfoil surface
(i.e., z=0):

Voo * az/ag 1 =
e(x,0) = - £ dg-—ﬂcfdl'{ (a49)
1) !_—ﬁ7\P r——x_g 7\13 2 PP
P
Uo 3 * az/ag fp 1
u(x,0) = - f dg-—-—ﬂf——d.R (A50
‘ T 0% o da T Je M BE P
Rp

where

dop /T 1 wpt? [- 2(x-t)
ox Lar(x-£)° [5 ¥ ll-(x'g):| ©
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It can be seen from exsmination of the preceding relations that the
integral equations for the parabolic case are nonlinear and singuler just
as are the integral equations for the elliptic case. The following dis-
cussion of the approximate solution of the equations for the parabolic
case will proceed, therefore, through applications of considerations that
are very similar to those described in the discussion of the elliptlc
case in the preceding section.

The results found by application of the linearized theory for somnic
flow described in references 23 through 28 follow from equation (A49)
or (A50) by equating fp to zero so that

Uo o [*dz/at
u(x,0) = - 2 f | a (a51)
’ NE oX Jo  Wx-t

and selecting a value for Ap. Various means have been proposed. for the
gelection of an appropriate value for Ap. In reference 28, the only one
of the sbove references that pertains directly to two-dimensional flows,
Maeder and Thommen suggest that Ap be determined by equating it to the
value for kBu/Bx , obtalned by differentiating equation (851) , that
occurs at the point along the chord at vhich u is a maximm in incom-
pressible flow. As noted in the main text in the discussion of the solu-
tion for the wedge, the results obtalned by application of this linearized
theory for sonic flow past thin airfoils may be at considerable variance
with other theoretical and experimental results. A further illustration
of this statement is provided in sketch (p') in which the results given

-8 T T T
Moo= Mgos! Mp=! | Ref. 28—\/
4 Eh164}\ Eq(53) P
1 |-Ref.28 Ref. 28 | Eq.59)~ ,A/
CP y S I v
| ///
o — ? £
4 o 0O -~ 10
(|) n=6 lIO ? n=2 i | n=6 ]
Sketch (pf)

in sketches (p), (r), and (t) for the circular-arc airfoil and the two
releted ailrfolls that have the point of meximm thickness at 30- and
TO-percent chord are repeated together with the corresponding results
obtalned by application of the procedures described in reference 28. It
can be seen upon comperison of these results with the experimental results
shown in sketches (p), (r), and (t) that the agreement.between the pres-
sure distribubtion calculated by application of the linearized theory for
sonlc flow and that measured experimentelly deterlorates as the pressure
gradient depaxrts from a constant. It is apparent from equation (A51)
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that the accuracy cannot he improved in any essential manner by the adop-
tion of a different rule for the selection of an appropriate value

for Ap. This follows from the fact that the entire curve representing
the pressure distribution is proportional to 1/\Ap and can be altered
in scale, but not in form, by use of other values for Ap. FPossibilitles
for iterastion always exist, and 1t is conceivable that improvements 1in
eccuracy could be attained. by inserting the solution of linearized sonic
flow theory into the terms involying fp in equation (A49) or (A50) to
obtain a second approximation, etc. To do so would be a laborious task
and there is always present a grave danger that the process will 4iverge,
or not converge sufficiently rapidly to be useful, when the first approx-
imstion is as fer from the proper solution as maey be inferred from
sketch (p') for the alrfoil with maximum thickness at 30-percent chord.

The procedures employed in the main text for the approximste solution
of the equations for the parsbolic case closely paraliel those used for
the spproximate solution of the equations for the hyperbolic and elliptic
cases. It is, consequently, not surprizing that the following discussion
of these procedures from the point of view of the integral equations given
in equations (A49) and (A50) i1s very similar to that in the preceding
sections of the Appendix. The general considerations are the same in all
three cases, but the parsbolic case more closely resembles the elliptic
case than the hyperbolic case becsuse of the singular nature of the kernel
in the double integral; that is, op and op approach infinity at the
point E=x, {=z. The expressions applied in the main text follow from
consideration of equation (A50) as a typical member of an Infinite set of
relations that result if Ap 1s replaced with the local value of kdu/dx
and the contribution of the double integral is disregarded. AL free-
stream Mach number 1, the funetion £fp thus reduces to zero at the point
where op is infinite, and it again appears plausible that less loss in
accuracy is incurred by disregarding the contribution of the double inte- -’
gral than in alternative procedures in which fp 1s not zero at this
point. At free-stream Mach numbers different from unity, fp 1s not zero
although it can be made as small as desired by approaching sufficlently
closely to free-stream Mach number 1. The results obtained by solution
of the remaining relation, which is & first-order nonlinear ordinary
differential equation, are completely comsilstent with the above remarks.
The pressure distributions celculated by use of only the first approxi-
metion are indeed In good accord with existing theoretical and experi-
mental results, and the initlal variation of Cp with M, at free-stream
Mach number 1 1s given exactly; but no indication is provided of the sub-
sequent variation of CP with M, at Mach numbers considerably removed
from unity.

If, on the other hand, the pressure distribution is calculated by
substitution of kQy, for 7\P in equation (Ah9) and differentiation of
the resulting expression to obtain an equation for u, the function in
the double integral that corresponds to fp in the gbove discussion does
not vanish at the point &=x, {=z where the kernel 1s infinite. If the
preceding discussion can be consldered to imply that the effective
removael of the singulerity is important in the approximate solution of
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singular integral equations, it mey be antliclpated that the results
obtained using equetion (A49) will not » 1In general, be so good as those
obtailned following the procedure employed in the main text.
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